
Stats 300b: Theory of Statistics Winter 2018

Lecture 18 – March 8

Lecturer: John Duchi Scribe: Fan Zhang

� Warning: these notes may contain factual errors

Reading:

1. Erich Leo Lehmann, Testing Statistical Hypotheses, Chapter 12.3

2. Van der Vaart, Asymptotic Statistics, Chapter 6.

Outline:

1. Absolute continuity of measures.

2. Contiguity and Asymptotics; Le Cam’s Lemmas.

3. Distance for distributions.

1 Recapitulation

For asymptotic test, we want to understand efficiency / sample size requirement. Suppose that
θn → 0, and Tn is a sequence of tests that satisfies

√
n

(
Tn − µ(θn)

σ(θn)

)
d−→ N(0, 1).

We have null hypothesis H0 : θ = 0 versus alternative hypothesis H1 : θ > 0. The null hypothesis

H0 is rejected for large Tn − µ(0). The performance of the test is governed by the slope µ′(0)
σ(0) .

Today we are going to discuss how to get limit for sequence of distributions Qn based on nearby
distributions Pn, when Pn and Qn are “getting close”.

2 Absolute Continuity

We begin with the notion that allows us to change measures in a non-asymptotic setting.

Definition 2.1. Probability measure Q is absolutely continuous with respect to probability measure
P , written Q� P , if P (A) = 0 implies Q(A) = 0 for any set A.

If Q � P , then the Radon-Nikodym theorem says that there exists a nonnegative measurable
function g, denoted dQ

dP , such that EQ[f ] = EP [fg] =
∫
fgdP =

∫
f dQdP dP for all f integrable with

respect to Q. Thus, given likelihood ratio g = dQ
dP and distribution P , we know everything about

Q.
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Note: Let p = dP
dµ , q = dQ

dµ for a dominating distribution µ such that µ� P , µ� Q, then Q� P

⇔ Q(p > 0) = 0 ⇔
∫

( qp)dP =
∫

( qp)1{p>0}dP = 1.
The following corollary is another formulation of some of these ideas.

Corollary 1. Let M be the joint measure (law) of the pair (X,L) :=
(
X, dQdP

)
under distribution

P . (So M is defined on X × R+). Then L ≥ 0, EM [L] = 1, and Q(B) = EP
[
1B(X)dQdP

]
=

EP [1B(X)L] =
∫
B×R+

rdM(x, r). Moreover, EQ[f(X,L)] =
∫
X×R+

f(x, r)rdM(x, r) for all bounded

measurable function f , i.e. (X,L) has density rdM(x, r) under distribution Q.

Idea: If we know law of X and L under P , then we can construct law of X under Q. Can we do
this in an asymptotic sense? We would like to find an asymptotic version of Corollary 1. This is
going to allow us to transfer power of calculations under a sequence Pn to an alternative Qn, if Qn
is “asymptotically absolutely continuous” with respect to Pn.

3 Contiguity and Asymptotics; Le Cam’s Lemmas.

The notion that will allow to perform the asymptotic versions of the previous calculations is con-
tiguity.

Definition 3.1. A sequence {Qn} of distributions is contiguous with respect to {Pn}, written
Qn / Pn, if Pn(An) → 0 implies Qn(An) → 0 for any sequence of sets An. Sequences {Qn} and
{Pn} are mutually contiguous, written Qn /.Pn, if Qn / Pn and Pn / Qn.

Below we will characterize contiguity with conditions on the limits of density representations of
Pn and Qn. Because Pn and Qn need not be absolutely continuous with respect to each other, nor
are we a priori provided some mutually dominating measure, the following observations are useful.

Observation 2. Suppose that there exist a dominating distribution µ s.t. pn = dPn
dµ and qn = dQn

dµ .

Let Ln = dQn
dPn

, then we always have EPn [Ln] =
∫ qn
pn
dPn =

∫ qn
pn

1{pn>0}dPn = Qn(pn > 0) ≤ 1.
Thus, under Pn, the sequence Ln is tight, which implies that Ln always has a weakly convergent
subsequence.

We are now ready to state alternative characterizations of contiguity.

Lemma 3 (Le Cam’s First Lemma, or “Limits determine contiguity”). The following are equiva-
lent:

1. Qn / Pn.

2. If L−1
n

d−→
Qn

U along a subsequence, then P(U > 0) = 1.

3. If Ln
d−→
Pn

L along a subsequence, then E[L] = 1.

4. Tn
Pn−→ 0 implies Tn

Qn−→ 0.

Proof Idea 4⇒1 : Take An such that Pn(An)→ 0. Define Tn = 1An . Then certainly Tn
Pn→ 0,

so Tn
Qn→ 0. That is, Qn(An)→ 0.
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The second claim is basically saying that limit EPn [Ln] = 1, so everything with dPn = 0 satisfies
dQn = 0.

The third claim says that (pnqn )qn > 0 is eventually going to happen, i.e. pn can’t be 0 if qn > 0
for large n.

The proof can be found in Van der Vaart Chapter 6.

The following two examples will be useful in later developments.

Example 1 (Asymptotic log normality): Suppose we have log dPn
dQn

d−→
Qn

N(µ, σ2). Then, by the

continuous mapping theorem, we have dPn
dQn

d−→
Qn

exp(N(µ, σ2)) is greater than 0 with probability

1. Applying the second characterization of LeCam’s First Lemma implies Qn / Pn. On the other
hand, based on our knowledge of the moment generating function for normal random variables,
E[exp(N(µ, σ2)] = exp

(
µ+ 1

2σ
2
)
. Applying the third characterization of LeCam’s First Lemma

gives that Pn / Qn if and only if exp
(
µ+ 1

2σ
2
)

= 1. That is, µ = −1
2σ

2. ♣

Example 2 (Smooth likelihoods under local alternatives): Suppose {Pθ}θ∈Θ has densities pθ, and
pθ is smooth enough in θ that log pθ has a Taylor expansion around θ0 ∈ int Θ. That is,

log pθ0+h = `θ0 + hT∇`θ0 +
1

2
hT∇2`θ0h+O(‖h‖3)

where `θ = log pθ.

For X1, . . . , Xn
i.i.d.∼ Pθ0 , a Taylor expansion gives

log
dPθ0+h/

√
n

dPθ0
(X1, · · · , Xn) =

n∑
i=1

(
`θ0+h/

√
n(Xi)− `θ0(Xi)

)
=

1√
n

n∑
i=1

hT∇`θ0(Xi) +
1

2n
hT

n∑
i=1

∇2`θ0(Xi)h+ oPθ0 (1)

=
1√
n

n∑
i=1

hT∇`θ0(Xi)︸ ︷︷ ︸
d→N(0,hT Iθh)

−1

2
hT Iθ0h+ oPθ0 (1)

d→ N

(
−1

2
hT Iθ0h, h

T Iθ0h

)
.

Surprisingly, this is exactly the condition for mutual contiguity from Example 1! Thus Pnθ0 /.P
n
θ0+h/

√
n
.

Local alternatives and the null are mutually contiguous! ♣

In analogy with Corollary 1 and in light of the previous example, we now wonder whether mutual
contiguity tells us something about limit distributions under alternatives. The next theorem is the
beginning of an answer.

Theorem 4 (Le Cam). Let Pn, Qn be distributions on Xn ∈ X , Ln = dQn
dPn

. If Qn / Pn and

(Xn, Ln)
d−→
Pn

(X,L) with joint measure M on X × R+, then (Xn, Ln)
d−→
Qn

W , where W is a

distribution with density rdM(x, r) on X × R+.
Written differently, if f : X×R+ 7→ R is a bounded continuous function and EPn [f(Xn, Ln)] −→∫

f(x, r)dM(x, r), then EQn [f(Xn, Ln)] −→
∫
f(x, r)dM(x, r).

If we define Q(B) := EM [1B(X)L] then Q is a probability measure, and Xn
d−→
Qn

Z where Z ∼ Q.
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Proof (See Van der Vaart Chapter 6).

The following example is an important application of Theorem 4.

Lemma 5 (Le Cam’s Third Lemma). If
(
Xn, log dQn

dPn

)
d−→
Pn

N

((
µ
−1

2σ
2

)
,

(
Σ τ
τT σ2

))
, then Xn

d−→
Qn

N(µ+ τ,Σ).

Sketch of Proof An equivalent result to the Theorem 4 is that

EPn [f(Xn, logLn)] −→
∫
f(x, r)dM(x, r)

implies

EQn [f(Xn, logLn)] −→
∫
f(x, r)erdM(x, r).

Let (X̃, Z̃) has density erdM(x, r), then for λ ∈ Rd+ and i =
√
−1,

E[exp(iλT X̃)] =

∫
eiλ

T xerdM(x, r)

= E[exp
(
iλTX + Z

)
] (X,Z) ∼M

= characteristic function of (X,Z) at t =

(
λ
−i

)
= exp

(
i(µ+ τ)Tλ− 1

2
λTΣλ

)
= characteristic function of N(µ+ τ,Σ),

which completes the proof.

Example 3: Suppose usual parametric situation and that

Tn = − 1√
n

n∑
i=1

I−1
θ0

˙`θ0(Xi) + oPθ0 (1).

Under alternative distribution Pθ0+h/
√
n, consider joint distributionTn, log

dPnθ0+ h√
n

dPnθ0


=

(
− 1√

n

n∑
i=1

I−1
θ0

˙`θ0(Xi) + oPθ0 (1), hT

(
−1√
n

n∑
i=1

˙`θ0(Xi)

)
− 1

2
hT Iθ0h+ oPθ0 (1)

)
d−→
Pθ0

N

((
0

−1
2h

T Iθ0h

)
,

(
Iθ0 h
hT hT Iθ0h

))
,

where we use

CovPθ0

(
1√
n

n∑
i=1

˙`θ0(Xi)
Th,

1√
n

n∑
i=1

I−1
θ0

˙`θ0(Xi)

)
= h

4



to compute the covariance matrix. Therefore, by Le Cam’s Third Lemma,

Tn
d−→

P
θ0+

h√
n

N
(
h, I−1

θ0

)
.

Consequently, if you have estimator θ̂n with typical expansion, i.e.

√
n
(
θ̂n − θ0

)
= − 1√

n

n∑
i=1

I−1
θ0

˙`θ0(Xi) + oPθ0 (1),

then
√
n

(
θ̂n −

(
θ0 +

h√
n

))
d−→

P
θ0+

h√
n

N
(

0, I−1
θ0

)
.

♣
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