Stats 300b: Theory of Statistics

Winter 2018

Lecture 15 – February 27

Lecturer: John Duchi

Scribe: Shi Dong and Ruiyang Song

Warning: these notes may contain factual errors

Reading: VDV Chapters 18 and 19; Notes on the Arzelà-Ascoli theorem on the course website.

1 Recap: Uniform Limits in Distributions

Definition 1.1. A process $(X_n)_{n=1}^{\infty}$, $X_n \in L^{\infty}(T)$, is asymptotically stochastically equi-continuous (ASEC) if $\forall \varepsilon > 0, \eta > 0$, there exists a partition T_1, \ldots, T_m of T such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\max_{i \le m} \sup_{s, t \in T_i} |X_n(s) - X_n(t)| \ge \varepsilon\right) \le \eta.$$
(1)

2 Weak Convergence in $L^{\infty}(T)$

Theorem 1. Let $\{X_n\}_{n=1}^{\infty} \subset L^{\infty}(T)$ be a sequence of stochastic processes on T. The followings are equivalent.

- (1) X_n converge in distribution to a tight stochastic process $X \in L^{\infty}(T)$;
- (2) both of the followings:
 - (a) Finite Dimensional Convergence (FIDI): for every $k \in \mathbb{N}$ and $t_1, \dots, t_k \in T$,

$$(X_n(t_1),\cdots,X_n(t_k))$$

converge in distribution as $n \to \infty$;

(b) the sequence $\{X_n\}$ is asymptotically stochastically equicontinuous.

Proof $(1) \Rightarrow (2)$ is trivial. Here we only prove $(2) \Rightarrow (1)$.

Part I: Consider countable subsets of T.

Let $m \in \mathbb{N}$, and construct partitions $T_1^m, \cdots, T_{k_m}^m$ of T such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\max_{1 \le i \le k_m} \sup_{s, t \in T_i^m} \left| X_n(s) - X_n(t) \right| \ge 2^{-m} \right) \le 2^{-m}.$$
 (2)

Without loss of generality, assume that $\{T_i^m\}_m$ are nested partitions. For each $m \in \mathbb{N}$, define

$$\rho_m(s,t) = \begin{cases} 0 & \text{if } s, t \in T_i^m \text{ for some } i \\ 1 & \text{otherwise} \end{cases}$$

and let

$$\rho(s,t) = \sum_{m=1}^{\infty} 2^{-m} \rho_m(s,t) \quad \forall s,t \in T.$$

It is easy to see that ρ is a metric. Also notice that if $s, t \in T_i^m$, there is $\rho(s, t) < 2^{-m}$. Therefore diam $(T_i^m) < 2^{-m}$. From each T_i^m we pick out an element $t_{i,m}$ and define

$$T_0 = \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{k_m} \{t_{i,m}\}.$$

Obviously T_0 is countable. Further, for each $t \in T$ and any $m \in \mathbb{N}$, suppose $t \in T_j^m$, we have $\rho(t, t_{j,m}) < 2^{-m}$. Hence T_0 is dense in T with respect to the ρ -metric.

Part II: Use T_0 to obtain a limit process in $C(T, \mathbb{R})$. By Kolmogorov's extension theorem, there is some stochastic process $\{X(t)\}_{t\in T_0}$ where

$$(X_n(t_1), \cdots, X_n(t_k)) \xrightarrow{d} (X(t_1), \cdots, X(t_k)) \quad \forall k \in \mathbb{N}, \ t_1 \cdots, t_k \in T_0.$$
(3)

Let S be a finite subset of T_0 , then

$$\mathbb{P}\left(\sup_{s,t\in T_{0},\ \rho(s,t)<2^{-m}}\left|X(s)-X(t)\right|\geq 2^{-m}\right) \stackrel{(a)}{\leq} \mathbb{P}\left(\max_{1\leq i\leq k_{m}}\sup_{s,t\in T_{i}^{m}\cap T_{0}}\left|X(s)-X(t)\right|\geq 2^{-m}\right) \\ \stackrel{(b)}{=} \lim_{S\uparrow T_{0}}\mathbb{P}\left(\max_{1\leq i\leq k_{m}}\max_{s,t\in T_{i}^{m}\cap S}\left|X(s)-X(t)\right|\geq 2^{-m}\right) \\ \stackrel{(c)}{\leq} \lim_{S\uparrow T_{0}}\limsup_{n\to\infty}\mathbb{P}\left(\max_{1\leq i\leq k_{m}}\max_{s,t\in T_{i}^{m}\cap S}\left|X_{n}(s)-X_{n}(t)\right|\geq 2^{-m}\right) \\ \stackrel{(d)}{\leq} 2^{-m}, \tag{4}$$

where (a) is because $\rho(s,t) < 2^{-m}$ implies $s,t \in T_i^m$ for some $i \leq k_m$; (b) follows from monotone convergence theorem; (c) is the result of finite dimensional convergence (FIDI); (d) results from (2). Notice that

$$\sum_{m=1}^{\infty} \mathbb{P}\left(\sup_{s,t\in T_0, \ \rho(s,t)<2^{-m}} |X(s)-X(t)| \ge 2^{-m}\right) \le \sum_{m=1}^{\infty} 2^{-m} = 1,$$

By Borel-Cantelli lemma, we have

$$\mathbb{P}\left(\exists M \in \mathbb{N}, \text{ s.t. } \forall m \ge M, \sup_{s,t \in T_0, \ \rho(s,t) < 2^{-m}} \left| X(s) - X(t) \right| < 2^{-m} \right) = 1.$$

Therefore with probability 1, process $\{X(t)\}_{t \in T_0}$ is continuous (even locally Lipschitz), i.e. $X \in C(T_0, \mathbb{R})$. Since T_0 is dense in T, we have that

$$X \in C(T, \mathbb{R})$$
 a.s.

Also notice that the total boundedness of T implies the uniform continuity of X.

Part III: Show that $X_n \xrightarrow{d} X$.

We only have to show $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded and Lipschitz f. Recall that $t_{i,m}$ is an element of T_i^m . For any $t \in T_i^m$, let $\pi_m(t) = t_{i,m}$. Then there is $\rho(t, \pi_m(t)) < 2^{-m}$. Define $(X \circ \pi_m)(t) = X(\pi_m(t))$, then we have

$$X \circ \pi_m \stackrel{a.s.}{\to} X, \quad \text{as } m \to \infty,$$

by uniform continuity. In other words,

$$\sup_{t \in T} \left| (X \circ \pi_m)(t) - X(t) \right| \to 0, \quad \text{as } m \to \infty.$$
(5)

Using finite dimensional converge, there is also

$$X_n \circ \pi_m \xrightarrow{d} X \circ \pi_m, \quad \text{as } n \to \infty.$$
 (6)

For $f: L^{\infty}(T) \mapsto [0, 1]$ that is Lipschitz, by triangular inequality,

$$\left| \mathbb{E}[f(X_n)] - \mathbb{E}[f(X)] \right| \le \left| \mathbb{E}[f(X_n \circ \pi_m)] - \mathbb{E}[f(X)] \right| + \left| \mathbb{E}[f(X_n \circ \pi_m)] - \mathbb{E}[f(X \circ \pi_m)] \right| + \left| \mathbb{E}[f(X \circ \pi_m)] - \mathbb{E}[f(X)] \right|$$

$$\tag{7}$$

Notice that from (6) we have

$$\left| \mathbb{E}[f(X_n \circ \pi_m)] - \mathbb{E}[f(X \circ \pi_m)] \right| \to 0, \quad \text{as } n \to \infty, \ \forall m.$$
(8)

From (5) together with the boundedness of f, there is

$$\left| \mathbb{E}[f(X \circ \pi_m)] - \mathbb{E}[f(X)] \right| \to 0, \quad \text{as } m \to \infty.$$
(9)

Finally we also have

$$\begin{aligned} \left| \mathbb{E}[f(X_n \circ \pi_m)] - \mathbb{E}[f(X_n)] \right| & \stackrel{(e)}{\leq} & \|f\|_{\mathrm{Lip}} \cdot \mathbb{E}\Big[1 \wedge \|X_n \circ \pi_m - X_n\|_{\infty} \Big] \\ & \leq & \|f\|_{\mathrm{Lip}} \cdot \left(\epsilon + \mathbb{P}\Big(\sup_{t \in T} |X_n(t) - X_n(\pi_m(t))| \ge \epsilon \Big) \right), \end{aligned}$$

where $\epsilon > 0$ is arbitrary, $||f||_{\text{Lip}}$ is the Lipschitz constant of f, and (e) originates from the Lipschitzity and boundedness of f. Setting $\epsilon = 2^{-m}$ and taking $n \to \infty$, there is

$$\limsup_{n \to \infty} \left| \mathbb{E}[f(X_n \circ \pi_m)] - \mathbb{E}[f(X_n)] \right| \leq \|f\|_{\operatorname{Lip}} \cdot \limsup_{n \to \infty} \left(2^{-m} + \mathbb{P}\left(\sup_{t \in T} \left| X_n(t) - X_n(\pi_m(t)) \right| \ge 2^{-m} \right) \right) \\ \stackrel{(f)}{\leq} \|f\|_{\operatorname{Lip}} \cdot (2^{-m} + 2^{-m}), \tag{10}$$

where (f) is the result of the asymptotic stochastic equicontinuity of $\{X_n\}$. Combining (7), (8), (9) and (10), the proof is complete.

Remark We actually showed that the limit process $(X_t)_{t \in T}$ has uniformly continuous sample paths for some metric ρ with probability 1, where (T, ρ) is totally bounded.

Corollary 2. Suppose that (T, d) is a totally bounded metric space with

$$\lim_{\delta \downarrow 0} \limsup_{n \to \infty} \mathbb{P}\left(\sup_{d(s,t) < \delta} |X_n(s) - X_n(t)| \ge \varepsilon \right) = 0, \tag{11}$$

and has FIDI, then $X_n \xrightarrow{d} X \in L^{\infty}(T)$, X is continuous w.p.1.

Proof Show ASEC: for $\varepsilon > 0, \delta > 0$, choose a partition of T, $\{T_i\}_{i=1}^m$, with diam $(T_i) < \delta$, then

$$\max_{i} \sup_{(s,t)\in T_{i}} |X_{n}(s) - X_{n}(t)| \le \sup_{d(s,t)<\delta} |X_{n}(s) - X_{n}(t))|.$$
(12)

The proof is complete.

3 Donsker Classes

Definition 3.1. A collection \mathcal{F} of functions is called P-Donsker if the process

$$\left(\sqrt{n}(P_n-P)f\right)_{f\in\mathcal{F}}$$

converges to a tight limit process in $L^{\infty}(\mathcal{F})$, i.e. $\sqrt{n}(P_n - P)$ converges in $L^{\infty}(\mathcal{F})$.

Remark This limit process must be a Gaussian process $\mathbb{G} = \mathbb{G}_P$, i.e. \mathbb{G} is a random mapping from \mathcal{F} to \mathbb{R} such that

$$(\mathbb{G}f_1, \cdots, \mathbb{G}f_k) \sim \mathsf{N}\left(0, \left[\operatorname{Cov}_P(f_i, f_j)\right]_{i,j=1}^k\right) \quad \forall f_1, \cdots, f_k \in \mathcal{F}, \ k < \infty,$$

where

$$\operatorname{Cov}_P(f_i, f_j) = \operatorname{Cov}_{X \sim P} [f_i(X), f_j(X)].$$

Example 1: (*P*-Brownian bridge) Let $F_n(t) = P_n(X \le t)$, $F(t) = P(X \le t)$, and $\mathcal{F} = \{1(\cdot \le t)\}_{t \in \mathbb{R}}$. Then

$$\left\{\sqrt{n}\left(F_n(t) - F(t)\right)\right\}_{t \in \mathbb{R}} \stackrel{d}{\to} \mathbb{G}_p \in L^{\infty}(\mathbb{R}).$$
(13)

For $s, t \in \mathbb{R}$,

$$\mathbb{E}[1(X \le s)1(X \le t)] = F(s \land t), \tag{14}$$

then $\mathbb G$ is a Gaussian process with

$$\operatorname{Cov}(\mathbb{G}_t, \mathbb{G}_s) = F(s \wedge t) - F(s)F(t), \tag{15}$$

and $\mathbb{G}_t - \mathbb{G}_s$ is Gaussian, and

$$\operatorname{Var}(\mathbb{G}_t - \mathbb{G}_s) = \mathbb{E}\left[\mathbb{G}_s^2 + \mathbb{G}_t^2\right] - 2\mathbb{E}[\mathbb{G}_s\mathbb{G}_t] = F(s)(1 - F(s)) + F(t)(1 - F(t)) - 2F(s \wedge t) + 2F(s)F(t).$$
(16)

Example 2: (Lipschitz functions) Let $\Theta \subset \mathbb{R}^d$, where Θ is compact. Let $\ell : \Theta \times \mathcal{X} \mapsto \mathbb{R}$, with $\ell(\cdot, x)$ is L(x)-Lipschitz on Θ , and $\mathbb{E}_P[L(x)^2] < \infty$, then $\mathcal{F} = \{\ell(\theta, \cdot)\}_{\theta \in \Theta}$ is *p*-Donsker, and

$$\sqrt{n} \left(P_n \ell(\cdot, x) - P \ell(\cdot, x) \right) \stackrel{d}{\to} \mathbb{G} \in C(\Theta, \mathbb{R}), \tag{17}$$

with

$$\operatorname{Cov}(\mathbb{G}_{\theta_0} - \mathbb{G}_{\theta_1}) = \operatorname{Cov}\left(\ell(\theta_0, x), \ell(\theta_1, x)\right)).$$
(18)

÷

The following theorem shows that, a function class is P-Donsker if it has uniformly bounded entropy.

Theorem 3. Let \mathcal{F} be a class of functions mapping \mathcal{X} to \mathbb{R} , and $F : \mathcal{X} \mapsto \mathbb{R}$ be an envelope of \mathcal{F} , *i.e.*

$$f \in \mathcal{F} \Rightarrow |f(x)| \le |F(x)|, \ \forall x \in \mathcal{X}.$$

Suppose that

$$\int_{0}^{\infty} \sup_{Q} \sqrt{\log N(\mathcal{F}, L^{2}(Q), \|F\|_{L^{2}(Q)}) \cdot \epsilon} \, \mathrm{d}\epsilon < \infty,$$
(19)

where the supremum is over all finitely supported measure Q on \mathcal{X} . Further if $PF^2 < \infty$, then F is P-Donsker.

Sketch of Proof Let

$$\mathcal{F}_{\delta} := \{ (f,g) : f,g \in \mathcal{F}, \| f - g \|_{L^{2}(P)} \le \delta \},$$
(20)

and $\mathbb{G}_n := \sqrt{n}(P_n - P), \mathbb{G}_n \in L^{\infty}(\mathcal{F})$, i.e.

$$\mathbb{G}_n f = \sqrt{n} (P_n - P) f = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(f(X_i) - \mathbb{E}_P[f(X)] \right).$$
(21)

Then

$$\mathbb{P}\left(\sup_{\|f-g\|_{L^{2}} \leq \delta} |\mathbb{G}_{n}(f-g)| \geq \varepsilon\right) \\
= \mathbb{P}\left(\|\mathbb{G}_{n}\|_{\mathcal{F}_{\delta}} \geq \varepsilon\right) \\
\leq \frac{2}{\varepsilon} \mathbb{E}\left[\sup_{f \in \mathcal{F}_{\delta}} |\sqrt{n}P_{n}{}^{o}f|\right] \\
\leq \frac{C}{\varepsilon} \mathbb{E}\left[\int_{0}^{\infty} \sqrt{\log N(\mathcal{F}_{\delta}, \|\cdot\|_{L^{2}(P_{n})}, \epsilon)} d\epsilon\right].$$
(22)

Let $\theta_n = \sup_{f \in \mathcal{F}_{\delta}} |P_n f^2|$. Note that

$$N(\mathcal{F}_{\delta}, L^{2}(P), \epsilon) \leq N(\mathcal{F}, L^{2}(P), \epsilon/2)^{2},$$
(23)

we have

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}_{\delta}}\left|\sqrt{n}P_{n}^{o}f\right|\right] \leq C\mathbb{E}\left[\int_{0}^{\theta_{n}}\sqrt{\log N\left(\mathcal{F},L^{2}(P_{n}),\epsilon\right)}\mathrm{d}\epsilon\right]$$
$$\leq C\mathbb{E}\left[\int_{0}^{\infty}\mathbf{1}\left(\epsilon\leq\theta_{n}\right)\sup_{Q}\sqrt{\log N\left(\mathcal{F},L^{2}(Q),\epsilon\right)}\mathrm{d}\epsilon\right]$$
$$= C\mathbb{E}\left[\int_{0}^{\infty}\mathbf{1}\left(\|F\|_{L^{2}(P_{n})}\epsilon\leq\theta_{n}\right)\|F\|_{L^{2}(P_{n})}\cdot\sup_{Q}\sqrt{\log N\left(\mathcal{F},L^{2}(Q),\|F\|_{L^{2}(P_{n})}\epsilon\right)}\mathrm{d}\epsilon\right]$$
(24)

For the remaining steps, we only provide a sketch of the proof. If θ_n is small, the dominated convergence theorem implies that the integral goes to 0. If $\theta_n \to 0$, applying the Glivenko-Cantelli theorem, we have

$$\lim_{n \to \infty} \sup_{\|f - g\|_{L^2(P)} \le \delta} P_n |f - g|^2 \le O(1) \cdot \delta^2$$
(25)

with probability 1. Hence if $\delta \to 0$, the integral converges to 0.