
Stats 300b: Theory of Statistics Winter 2018

Lecture 15 – February 27

Lecturer: John Duchi Scribe: Shi Dong and Ruiyang Song

� Warning: these notes may contain factual errors

Reading: VDV Chapters 18 and 19; Notes on the Arzelà-Ascoli theorem on the course website.

1 Recap: Uniform Limits in Distributions

Definition 1.1. A process (Xn)∞n=1, Xn ∈ L∞(T ), is asymptotically stochastically equi-continuous
(ASEC) if ∀ε > 0, η > 0, there exists a partition T1, . . . , Tm of T such that

lim sup
n→∞

P

(
max
i≤m

sup
s,t∈Ti

|Xn(s)−Xn(t)| ≥ ε

)
≤ η. (1)

2 Weak Convergence in L∞(T )

Theorem 1. Let {Xn}∞n=1 ⊂ L∞(T ) be a sequence of stochastic processes on T . The followings
are equivalent.

(1) Xn converge in distribution to a tight stochastic process X ∈ L∞(T );

(2) both of the followings:

(a) Finite Dimensional Convergence (FIDI): for every k ∈ N and t1, · · · , tk ∈ T ,

(Xn(t1), · · · , Xn(tk))

converge in distribution as n→∞;

(b) the sequence {Xn} is asymptotically stochastically equicontinuous.

Proof (1)⇒ (2) is trivial. Here we only prove (2)⇒ (1).

Part I: Consider countable subsets of T .
Let m ∈ N, and construct partitions Tm1 , · · · , Tmkm of T such that

lim sup
n→∞

P

(
max

1≤i≤km
sup

s,t∈Tmi

∣∣Xn(s)−Xn(t)
∣∣ ≥ 2−m

)
≤ 2−m. (2)

Without loss of generality, assume that {Tmi }m are nested partitions. For each m ∈ N, define

ρm(s, t) =

{
0 if s, t ∈ Tmi for some i

1 otherwise
.

and let

ρ(s, t) =

∞∑
m=1

2−mρm(s, t) ∀s, t ∈ T.
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It is easy to see that ρ is a metric. Also notice that if s, t ∈ Tmi , there is ρ(s, t) < 2−m. Therefore
diam (Tmi ) < 2−m. From each Tmi we pick out an element ti,m and define

T0 =
∞⋃
m=1

km⋃
i=1

{ti,m}.

Obviously T0 is countable. Further, for each t ∈ T and any m ∈ N, suppose t ∈ Tmj , we have
ρ(t, tj,m) < 2−m. Hence T0 is dense in T with respect to the ρ-metric.

Part II: Use T0 to obtain a limit process in C(T,R).
By Kolmogorov’s extension theorem, there is some stochastic process {X(t)}t∈T0 where

(Xn(t1), · · · , Xn(tk))
d→ (X(t1), · · · , X(tk)) ∀k ∈ N, t1 · · · , tk ∈ T0. (3)

Let S be a finite subset of T0, then

P

(
sup

s,t∈T0, ρ(s,t)<2−m

∣∣X(s)−X(t)
∣∣ ≥ 2−m

)
(a)

≤ P

(
max

1≤i≤km
sup

s,t∈Tmi ∩T0

∣∣X(s)−X(t)
∣∣ ≥ 2−m

)
(b)
= lim

S↑T0
P
(

max
1≤i≤km

max
s,t∈Tmi ∩S

∣∣X(s)−X(t)
∣∣ ≥ 2−m

)
(c)

≤ lim
S↑T0

lim sup
n→∞

P
(

max
1≤i≤km

max
s,t∈Tmi ∩S

∣∣Xn(s)−Xn(t)
∣∣ ≥ 2−m

)
(d)

≤ 2−m, (4)

where (a) is because ρ(s, t) < 2−m implies s, t ∈ Tmi for some i ≤ km; (b) follows from monotone
convergence theorem; (c) is the result of finite dimensional convergence (FIDI); (d) results from
(2). Notice that

∞∑
m=1

P

(
sup

s,t∈T0, ρ(s,t)<2−m

∣∣X(s)−X(t)
∣∣ ≥ 2−m

)
≤
∞∑
m=1

2−m = 1,

By Borel-Cantelli lemma, we have

P

(
∃M ∈ N, s.t. ∀m ≥M, sup

s,t∈T0, ρ(s,t)<2−m

∣∣X(s)−X(t)
∣∣ < 2−m

)
= 1.

Therefore with probability 1, process {X(t)}t∈T0 is continuous (even locally Lipschitz), i.e. X ∈
C(T0,R). Since T0 is dense in T , we have that

X ∈ C(T,R) a.s.

Also notice that the total boundedness of T implies the uniform continuity of X.

Part III: Show that Xn
d→ X.

We only have to show E[f(Xn)] → E[f(X)] for all bounded and Lipschitz f . Recall that ti,m is
an element of Tmi . For any t ∈ Tmi , let πm(t) = ti,m. Then there is ρ(t, πm(t)) < 2−m. Define
(X ◦ πm)(t) = X(πm(t)), then we have

X ◦ πm
a.s.→ X, as m→∞,
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by uniform continuity. In other words,

sup
t∈T

∣∣(X ◦ πm)(t)−X(t)
∣∣→ 0, as m→∞. (5)

Using finite dimensional converge, there is also

Xn ◦ πm
d→ X ◦ πm, as n→∞. (6)

For f : L∞(T ) 7→ [0, 1] that is Lipschitz, by triangular inequality,∣∣∣E[f(Xn)]−E[f(X)]
∣∣∣ ≤ ∣∣∣E[f(Xn◦πm)]−E[f(X)]

∣∣∣+∣∣∣E[f(Xn◦πm)]−E[f(X◦πm)]
∣∣∣+∣∣∣E[f(X◦πm)]−E[f(X)]

∣∣∣.
(7)

Notice that from (6) we have∣∣∣E[f(Xn ◦ πm)]− E[f(X ◦ πm)]
∣∣∣→ 0, as n→∞, ∀m. (8)

From (5) together with the boundedness of f , there is∣∣∣E[f(X ◦ πm)]− E[f(X)]
∣∣∣→ 0, as m→∞. (9)

Finally we also have∣∣∣E[f(Xn ◦ πm)]− E[f(Xn)]
∣∣∣ (e)

≤ ‖f‖Lip · E
[
1 ∧ ‖Xn ◦ πm −Xn‖∞

]
≤ ‖f‖Lip ·

(
ε+ P

(
sup
t∈T

∣∣Xn(t)−Xn(πm(t))
∣∣ ≥ ε)) ,

where ε > 0 is arbitrary, ‖f‖Lip is the Lipschitz constant of f , and (e) originates from the Lips-
chitzity and boundedness of f . Setting ε = 2−m and taking n→∞, there is

lim sup
n→∞

∣∣∣E[f(Xn ◦ πm)]− E[f(Xn)]
∣∣∣ ≤ ‖f‖Lip · lim sup

n→∞

(
2−m + P

(
sup
t∈T

∣∣Xn(t)−Xn(πm(t))
∣∣ ≥ 2−m

))
(f)

≤ ‖f‖Lip · (2−m + 2−m), (10)

where (f) is the result of the asymptotic stochastic equicontinuity of {Xn}. Combining (7), (8),
(9) and (10), the proof is complete.
Remark We actually showed that the limit process (Xt)t∈T has uniformly continuous sample
paths for some metric ρ with probability 1, where (T, ρ) is totally bounded.

Corollary 2. Suppose that (T, d) is a totally bounded metric space with

lim
δ↓0

lim sup
n→∞

P

(
sup

d(s,t)<δ
|Xn(s)−Xn(t)| ≥ ε

)
= 0, (11)

and has FIDI, then Xn
d→ X ∈ L∞(T ), X is continuous w.p.1.

Proof Show ASEC: for ε > 0, δ > 0, choose a partition of T , {Ti}mi=1, with diam(Ti) < δ, then

max
i

sup
(s,t)∈Ti

|Xn(s)−Xn(t)| ≤ sup
d(s,t)<δ

|Xn(s)−Xn(t))|. (12)

The proof is complete.
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3 Donsker Classes

Definition 3.1. A collection F of functions is called P -Donsker if the process(√
n(Pn − P )f

)
f∈F

converges to a tight limit process in L∞(F), i.e.
√
n(Pn − P ) converges in L∞(F).

Remark This limit process must be a Gaussian process G = GP , i.e. G is a random mapping
from F to R such that

(Gf1, · · · ,Gfk) ∼ N
(

0,
[
CovP (fi, fj)

]k
i,j=1

)
∀f1, · · · , fk ∈ F , k <∞,

where
CovP (fi, fj) = CovX∼P

[
fi(X), fj(X)

]
.

Example 1: (P -Brownian bridge) Let Fn(t) = Pn(X ≤ t), F (t) = P (X ≤ t), and F = {1(· ≤
t)}t∈R. Then {√

n (Fn(t)− F (t))
}
t∈R

d→ Gp ∈ L∞(R). (13)

For s, t ∈ R,
E[1(X ≤ s)1(X ≤ t)] = F (s ∧ t), (14)

then G is a Gaussian process with

Cov(Gt,Gs) = F (s ∧ t)− F (s)F (t), (15)

and Gt −Gs is Gaussian, and

Var(Gt−Gs) = E
[
G2
s + G2

t

]
−2E[GsGt] = F (s)(1−F (s))+F (t)(1−F (t))−2F (s∧ t)+2F (s)F (t).

(16)
♣

Example 2: (Lipschitz functions) Let Θ ⊂ Rd, where Θ is compact. Let ` : Θ×X 7→ R, with
`(·, x) is L(x)−Lipschitz on Θ, and EP [L(x)2] <∞, then F = {`(θ, ·)}θ∈Θ is p−Donsker, and

√
n (Pn`(·, x)− P`(·, x))

d→ G ∈ C(Θ,R), (17)

with
Cov(Gθ0 −Gθ1) = Cov (`(θ0, x), `(θ1, x))). (18)

♣

The following theorem shows that, a function class is P -Donsker if it has uniformly bounded
entropy.
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Theorem 3. Let F be a class of functions mapping X to R, and F : X 7→ R be an envelope of F ,
i.e.

f ∈ F ⇒ |f(x)| ≤ |F (x)|, ∀x ∈ X .
Suppose that ∫ ∞

0
sup
Q

√
logN(F , L2(Q), ‖F‖L2(Q)) · ε dε <∞, (19)

where the supremum is over all finitely supported measure Q on X . Further if PF 2 < ∞, then F
is P -Donsker.

Sketch of Proof Let

Fδ := {(f, g) : f, g ∈ F , ‖f − g‖L2(P ) ≤ δ}, (20)

and Gn :=
√
n(Pn − P ), Gn ∈ L∞(F), i.e.

Gnf =
√
n(Pn − P )f =

1√
n

n∑
i=1

(f(Xi)− EP [f(X)]) . (21)

Then

P

(
sup

‖f−g‖L2≤δ
|Gn(f − g)| ≥ ε

)
=P (‖Gn‖Fδ ≥ ε)

≤2

ε
E

[
sup
f∈Fδ

|
√
nPn

of |

]

≤C
ε
E
[∫ ∞

0

√
logN(Fδ, ‖ · ‖L2(Pn), ε)dε

]
. (22)

Let θn = supf∈Fδ |Pnf
2|. Note that

N(Fδ, L2(P ), ε) ≤ N(F , L2(P ), ε/2)2, (23)

we have

E

[
sup
f∈Fδ

∣∣√nP onf ∣∣
]
≤ CE

[∫ θn

0

√
logN (F , L2(Pn), ε)dε

]

≤ CE

[∫ ∞
0

1(ε ≤ θn) sup
Q

√
logN (F , L2(Q), ε)dε

]

= CE

[∫ ∞
0

1
(
‖F‖L2(Pn)ε ≤ θn

)
‖F‖L2(Pn) · sup

Q

√
logN

(
F , L2(Q), ‖F‖L2(Pn)ε

)
dε

]
.

(24)

For the remaining steps, we only provide a sketch of the proof. If θn is small, the dominated
convergence theorem implies that the integral goes to 0. If θn → 0, applying the Glivenko-Cantelli
theorem, we have

lim
n→∞

sup
‖f−g‖L2(P )≤δ

Pn|f − g|2 ≤ O(1) · δ2 (25)

with probability 1. Hence if δ → 0, the integral converges to 0.
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