Stats 300b: Theory of Statistics Winter 2018

Lecture 15 — February 27

Lecturer: John Duchi Scribe: Shi Dong and Ruiyang Song

@ Warning: these notes may contain factual errors

Reading: VDV Chapters 18 and 19; Notes on the Arzela-Ascoli theorem on the course website.

1 Recap: Uniform Limits in Distributions

Definition 1.1. A process (X,)o2, X,, € L>®(T), is asymptotically stochastically equi-continuous
(ASEC) if Ve > 0,n > 0, there exists a partition Ty, ..., Ty, of T such that

limsup P (max sup | X, (s) — Xn(t)| > 6) <. (1)

n—00 iSm g teT;

2 Weak Convergence in L>(T)

Theorem 1. Let {X,}0°, C L>®(T) be a sequence of stochastic processes on T'. The followings
are equivalent.

(1) X, converge in distribution to a tight stochastic process X € L*>°(T);
(2) both of the followings:

(a) Finite Dimensional Convergence (FIDI): for every k € N and t1,--- ,tx € T,

(Xn(t1), -+, Xn(tr))

converge in distribution as n — oo;

(b) the sequence {X,} is asymptotically stochastically equicontinuous.
Proof (1) = (2) is trivial. Here we only prove (2) = (1).

Part I: Consider countable subsets of T'.

Let m € N, and construct partitions 77", --- ,T;" of T' such that
limsup P| max sup [X,(s)—Xp(t)]=2""|<27™ (2)
n—oo 1<i<km s,teTim

Without loss of generality, assume that {7)"},, are nested partitions. For each m € N, define

0 if s, t €T/ for some ¢
pm(s,t) = :

1 otherwise
and let
o
p(s,t) = Z 27" o (s,t) Vs, t € T.

m=1



It is easy to see that p is a metric. Also notice that if s,¢ € 1", there is p(s,t) < 27™. Therefore
diam (77") < 27™. From each 7™ we pick out an element ¢; ,, and define

oo km

To = |J (J{tim}-

m=11i=1

Obviously Tp is countable. Further, for each ¢ € T' and any m € N, suppose ¢ € T}", we have
p(t,tjm) < 27™. Hence Ty is dense in T' with respect to the p-metric.

Part II: Use Tj to obtain a limit process in C(T,R).
By Kolmogorov’s extension theorem, there is some stochastic process { X (t) }+er;, where

(Xn(t1),- -+ Xu(t)) 5 (X (1), -+, X(t) VEEN, ti--- b, € To. (3)

Let S be a finite subset of Tp, then

—
S
=

P ( sup |X(s) = X(t)| > 2_m> < P ( max  sup | X(s) - X(t)] > 2_m>

s,teTp, p(s,t)<27m 1<i<km S,tET{nﬂTO

= limP ( max max |X(s)— X(t)| > Qm)
ST \1<i<km steTmNS

()
< lim limsup P a ax | X - X, ) >2™
ST novc <mm\ n(s) = Xa(t)] > )

< 2™ (4)

where (a) is because p(s,t) < 27 implies s,t € T} for some i < ky,; (b) follows from monotone
convergence theorem; (c) is the result of finite dimensional convergence (FIDI); (d) results from
(2). Notice that

oo o0
> sup (X(s) = X(@®)] =27 ] <) 27" =1,
m=1 \s:t€T0, p(sit)<2™ m=1
By Borel-Cantelli lemma, we have
P|3dM €N, s.t. Vm > M, sup ‘X(s)—X(t)|<2_m =1
s,te€Tp, p(s,t)<2—m

Therefore with probability 1, process {X(¢)}te7, is continuous (even locally Lipschitz), i.e. X €
C(Ty,R). Since Ty is dense in T, we have that

X e C(T,R) as.
Also notice that the total boundedness of T implies the uniform continuity of X.

Part IT1: Show that X, 5 X.

We only have to show E[f(X,)] — E[f(X)] for all bounded and Lipschitz f. Recall that t;,, is
an element of T;". For any t € T;", let mp,(t) = t;m. Then there is p(t,m,(t)) < 27™. Define
(X omp)(t) = X (mm(t)), then we have

Xom, ¥ X, asm — oo,



by uniform continuity. In other words,

igﬂg’(Xowm)(t)—X(t)‘ — 0, asm — oo. (5)

Using finite dimensional converge, there is also
Xno7rm—d>Xo7rm, as n — oo. (6)
For f: L>(T) + [0,1] that is Lipschitz, by triangular inequality,

ELf(Xn)]-ELf(X)]| < [BLf (Xnomm)]~ELf (X)] |+ [ELf (Xnomm)|~ELf (X omm)] |+ ELF (Xomn) | ~ELF(X)]|
(7)

Notice that from (6) we have
‘E[f(Xn o mm)] — E[f(X o wm)]‘ 0, asn — oo, Vm. (8)
From (5) together with the boundedness of f, there is
’E[f(X omm)] —E[f(X)]] =0, asm — . (9)

Finally we also have

(e) i
< I lip E[LA X0 © n — Xlloo

E[f(Xn o ﬂ'm)] - E[f(Xn)]

< Ul (e P(s0p Xa(0) ~ Xulmn)] 2 ) )

where € > 0 is arbitrary, ||f||Lip is the Lipschitz constant of f, and (e) originates from the Lips-
chitzity and boundedness of f. Setting e = 27" and taking n — oo, there is

n—00 teT

limsup [B[f(X, o 7)] = B (X)) < 1/ uip - limsup (2""+P(sup\Xn<t>—Xn<7rm<t>>\zﬂ))

(f
< [ llip - (27 27, (10)

~

where (f) is the result of the asymptotic stochastic equicontinuity of {X,}. Combining (7), (8),
(9) and (10), the proof is complete. O
Remark  We actually showed that the limit process (X;)icr has uniformly continuous sample
paths for some metric p with probability 1, where (7', p) is totally bounded.

Corollary 2. Suppose that (T,d) is a totally bounded metric space with

limlimsup P ( sup | Xp(s) — Xn(t)] > E) =0, (11)
d(

10 nooo 5,6)<d

and has FIDI, then X, 4 xe L>(T), X is continuous w.p.1.
Proof Show ASEC: for e > 0,0 > 0, choose a partition of T', {T;}*, with diam(7;) < ¢, then

max sup ’Xn(s)_Xn(t)‘S sup |Xn(8)_Xn(t))" (12)
b (s0ET; d(s,t)<6

The proof is complete. O]



3 Donsker Classes

Definition 3.1. A collection F of functions is called P-Donsker if the process

(\/H(Pn - P)f)fg]:
converges to a tight limit process in L°°(F), i.e. /n(P, — P) converges in L>(F).

Remark  This limit process must be a Gaussian process G = Gp, i.e. G is a random mapping
from F to R such that

(Gfla"' 7Gfk) ~N (Ov [COVP(flvf])]ijzl) vflv"' 7fk € ‘Fa k< o0,

where

Covp(fi, fj) = Covxop|fi(X), f;(X)].

Example 1: (P-Brownian bridge) Let F,,(t) = P,(X <t), F(t) = P(X <t), and F = {1(- <
t)}teR. Then

(VR (Fa(t) = F(t)} e Gy € L¥(R). (13)

For s,t € R,
E[1(X <$)1(X <t)]=F(sAt), (14)

then G is a Gaussian process with
Cov(Gy,Gs) = F(sNt) — F(s)F(t), (15)
and G; — G, is Gaussian, and

Var(G, — G,) = E [G2 + G| — 2E[G,Gy] = F(s)(1— F(s)) + F(t)(1— F(t)) — 2F (s At) + 2F (s)F (1).
(16)
&

Example 2: (Lipschitz functions) Let © C R? where © is compact. Let £: © x X +— R, with
(-, x) is L(x)—Lipschitz on ©, and Ep[L(x)?] < oo, then F = {£(f,-)}gco is p—Donsker, and

Vi (Pol(-,z) — PU(-,z)) % G € C(O,R), (17)

with
Cov(Gy, — Gg,) = Cov (¢(bp, x), (01, 2))). (18)

The following theorem shows that, a function class is P-Donsker if it has uniformly bounded
entropy.



Theorem 3. Let F be a class of functions mapping X to R, and F : X — R be an envelope of F,
i.e.

feF=|fl@)|<|F(2)], Vo € X.
Suppose that

|| supfloe NF (@), 1Fl1g)) - € e < o (19)

where the supremum is over all finitely supported measure Q on X. Further if PF? < co, then F
1s P-Donsker.

Sketch of Proof Let

Fo={(f9): frg€F. |f —glliae < ). (20)
and G, := /n(P, — P), G, € L®(F), i.c.
Guf = Vii(Py — P)f = jﬁ S ((X:) — Ep[f(X))). (21)
=1

Then

IP’( sup IGn(f—9)|Z€>

I f=gll 2<8
=P (|Gnll7 =€)

sup |[vnP,°f]

<2E
€ feFs

C o0
<%k { | lesN T ||Lz<pn>,e>de] . (22)

£

Let 0, = supyer, |P,f?|. Note that
N(F5, L*(P),€) < N(F,L*(P),¢/2)%, (23)

we have

e
<CE / \/logN(]:,LQ(Pn),e)de}
L/ O

E [sup Vg
fEFs

< CE /OO 1(e < 0,,) sup /log N (F, L2(Q), e)de]
0 Q

(o9}
=CE /O 1 (I1Fllc2pyye < 0n) I1Fl L2, sup \/IOgN (F. L*(Q). |1 Fll 2 (p,y€) de | -
] (24)
For the remaining steps, we only provide a sketch of the proof. If 6, is small, the dominated
convergence theorem implies that the integral goes to 0. If 8, — 0, applying the Glivenko-Cantelli
theorem, we have
lim  sup  Pulf—g|*<0(1) -8 (25)
oo ||f_gHL2<p>S5

with probability 1. Hence if § — 0, the integral converges to 0. O
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