Stats 300b: Theory of Statistics

Winter 2017

Lecture 14 – February 22

Lecturer: John Duchi

Scribes: Emily Diana and Zihan Lin

Warning: these notes may contain factual errors

Reading: VdV 18-19

Outline:

- Moduli in distribution
- Moduli of continuity
- Convergence in distribution
- Prohorov's Theorem
- Stochastic equi-continuity

Recap Last week, we defined the modulus of continuity of a process

$$\Delta_n(\theta) := R_n(\theta) - R(\theta) - (R_n(\theta_0) - R(\theta_0))$$
$$\omega_n(\delta) := \sup_{d(\theta,\theta_0) \le \delta} |\Delta_n(\theta)|$$

Theorem 1. If $R(\theta) \ge R(\theta_0) + \lambda d(\theta, \theta_0)^{\alpha}$ and $\mathbb{E}[\omega_n(s)] \le c \frac{\delta^{\beta}}{\sqrt{(n)}}$, then if $\hat{\theta}_n = \arg \min_{\Theta} R_n(\theta)$,

$$(\hat{\theta}_n - \theta_0) = o_p(n^{-\frac{1}{2(\alpha - \beta)}})$$

Example 1: Suppose $X \sim P$, $\min P(X \ge \theta_0), P(X \le \theta_0) \ge \frac{1}{2}$. $P(X = \theta_0) = p_0 > 0$ so $med(X)=\theta_0$. Set $l(\theta, X) := |\theta - X|, R(\theta) = \mathbb{E}[|x - \theta|]$. Then $\theta_0 = \arg\min_{\theta} R(\theta) = med(x)$, and $R(\theta) \ge R(\theta_0) + p_0|\theta - \theta_0|$. Then, $\theta_n = \arg\min_{\theta} R_n(\theta) = \frac{1}{n} \sum_{i=1}^n |X_i - \theta|$ satisfies $\hat{\theta}_n - \theta_0 = O_p(n^{-k})$ for any $k < \infty$. (i.e., we want to see how much the absolute value wiggles around a neighborhood of size δ)

New Material Convergence in distribution in metric spaces and uniform versions of convergence in distribution. Recall that $X_N \xrightarrow{d} X$ if, and only if,

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$$

for all bounded continuous f. (This is the definition whether X_n and X are real-valued or valued in any other space.)

Definition 0.1. Let \mathbb{D} be a metric space. A random variable $X : \Omega \to \mathbb{D}$ is tight if, $\forall \varepsilon > 0$, $\exists K \subset \mathbb{D}$ compact such that

$$\mathbb{P}[X \in K] \ge 1 - \varepsilon. \tag{1}$$

Definition 0.2. A sequence of \mathbb{D} -valued random variable, $\{X_n\}_{n\in\mathbb{N}}$ is asymptotically tight if, for all $\varepsilon > 0$, $\exists K \subset \mathbb{D}$ compact such that

$$\limsup_{n \to \infty} \mathbb{P}[X_n \notin K^{\delta}] < \varepsilon$$

for all $\delta > 0$ where $K^{\delta} := \{ y \in \mathbb{D} : \operatorname{dist}(y, K) < \delta \}.$

Theorem 2 (Pohorov). Let $X_N : \Omega_n \to \mathbb{D}$.

- If $X_N \xrightarrow{d} X$ where X is tight, then X_n is asymptototically tight.
- If X_N is asymptotically tight, then there exists a subsequence $\{X_n\}$ and tight X such that $X_{n_k} \xrightarrow{d} X$ as $k \to \infty$.

Example 2: Continuous functions on compact sets. Let (T, d) be a compact metric space. Let

$$L^{\infty}(T) := \left\{ f: T \to \mathbb{R} : f \text{ measureable, } \sup_{T} f(x) < \infty \right\}.$$

Take $\mathbb{D} = L^{\infty}(T)$. Let $\ell : T \times X \to \mathbb{R}$ be continuous and $X_i \stackrel{iid}{\sim} \mathbb{P}, X_i \in X$. Define $Z_n : T \to \mathbb{R}$ by

$$Z_n(\cdot) := \frac{1}{\sqrt{n}} \sum_{i=1}^n \ell(\cdot, X_i) - \mathbb{P}\ell(\cdot, X_i) = \sqrt{n} \left(\mathbb{P}_n - \mathbb{P}\right) [\ell(\cdot, X)].$$

Then Z_n is a continuous function of its argument $t \in T$, and so $Z_n \in L^{\infty}(T)$. (Note that if $t \subset T$ is countable and dense, then Z_n is determined completely by T_0 .) Let $t_1, \dots, t_k \in T$. Then

$$\left(Z_n(t_1), \cdots, Z_n(t_k)\right) \xrightarrow{d} N(0, \operatorname{cov}(\ell(t_i, x), \ell(t_j, x))).$$

Big question: is there a random version of this, i.e. some random function $Z \in L^{\infty}(T)$ s.t. $\{Z_n(t)\}_{t\in T} \xrightarrow{d} Z$? Compactness in functional space:

Evidently, if $X_n \in L_{\infty}(T)$, we must understand compactness in $L_{\infty}(T)$. For us, limits will be in $\mathcal{C}(T, R)$. $\mathcal{C}(T, R) = continuous$ function. $f: T \to \mathbb{R}$, $||f - g||_{\infty}$ is metric.

Standard compactness theorem: Arzela-Ascoli theorem

Definition 0.3. For a function $f : T \to \mathbb{R}$, modulus of continuity is

$$w_f(\delta) = \sup_{d(s,t) < \delta} \{ |f(t) - f(s)| \}$$

Definition 0.4. A collection \mathcal{F} is uniformly equicontinuous if

$$\lim_{s \downarrow 0} \sup_{f \in \mathcal{F}} w_f(\delta) = 0$$

Equivalently, $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $d(s,t) < \delta$, then $|f(s) - f(t)| \leq \delta$ for all $f \in \mathcal{F}$.

Theorem 3 (Arzela-Ascoli). Let (T, d) be a compact metric space. Then:

- 1. $\mathcal{F} \subset \mathcal{C}(T, \mathbb{R})$ is relatively compact in the sup norm. That is, $Cl(\mathcal{F})$ (Closure of \mathcal{F}) is compact
- 2. \mathcal{F} is uniformly equicontinuous and $\exists t_0 \in T$, s.t. $\sup_{f \in \mathcal{F}} |f(t_0)| < \infty$

are equivalent.

In stochastic case, we will look into the stochastic analogue of equicontinuity to show asymptotic rightness.

Definition 0.5. Let $X_n \in L_{\infty}(T)$ be random variables. We say that X_n are asymptotically equicontinuous if for all $\eta, \epsilon > 0$, there is a finite partition T_1, \ldots, T_k of T such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\max_{i} \sup_{s,t \in T_i} |X_{n,s} - X_{n,t}| \ge \epsilon\right) \le \eta.$$

Recall that we have a sequence Ω_n of sample spaces, with $X_n \colon \Omega_n \to L_\infty(T)$, and $X_{n,t}(\omega)$ is the value of $X_n(\omega)$ at t.

This definition is saying that for any fix amount of separation, we can divide T into little blocks so that the process is stochastically continuous within each block.

Example 3: Let $Z_i \in \mathbb{R}^d$ with $Z_i \stackrel{\text{iid}}{\sim} P$. Assume that $\mathbb{E}[||Z_i||^2] < \infty$ and $\mathbb{E}[Z_i] = 0$. Define $X_{n,t} := \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i^T t$ for $t \in T \subseteq \mathbb{R}^d$ (with $T = \{t \in \mathbb{R}^d : ||t||_2 \leq M\}$). Hence for any $\delta > 0$,

$$\mathbb{P}\left(\sup_{\|t-s\|\leq\delta}|X_{n,t}-X_{n,s}|\geq\epsilon\right) = \mathbb{P}\left(\left\|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}Z_{i}\right\|\delta\geq\epsilon\right) \leq \frac{\mathbb{E}\left\|Z_{i}\right\|^{2}\delta^{2}}{\epsilon^{2}} \quad by \ Chebyshev$$

Hence if we choose δ small enough, we get $\frac{\delta^2 \mathbb{E} \|Z_i\|^2}{\epsilon^2} \leq \eta$ for any desired $\eta > 0$. As T is compact, we can use a finite number of δ balls covering T. Hence X_n is a sequence of asymptotically equicontinuous random variables.

With stochastic equicontinuity, we put down finite balls centered at t^i in our set T. Somehow if $X_{n,t} \approx X_{n,t^i}$ for some t^i , then if X_{n,t^i} converges in distribution to something, $X_{n,t}$ should too.

Theorem 4 (Weak convergence in $L^{\infty}(T)$). The following are equivalent:

- (i) $X_i \in L_{\infty}(T)$ and $X_n \xrightarrow{d} X \in L_{\infty}(T)$ where X is tight.
- (ii) (a) Finite dimensional convergence (FIDI): $(X_{n,t_1}, \ldots, X_{n,t_k}) \stackrel{d}{\to} Z(t_1, \ldots, t_k)$ (something) for any $t_1, \ldots, t_k \in T$, and $k < \infty$.
 - (b) X_n are (asymptotically) stochastically equicontinuous.

Proof We only care about (ii) \implies (i).

Part 1: Construct $T_0 \subset T$ a countable dense subset and work there. Let $m \in \mathbb{N}$, construct partitions $T_1^m, \ldots, T_{k_m}^m$ of T such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\max_{i} \sup_{s,t \in T_{i}^{m}} |X_{n,s} - X_{n,t}| \ge 2^{-m}\right) \le 2^{-m}.$$

Assume without loss of generality that partitions are nested.

For each m, define

$$\rho_m(s,t) = \begin{cases} 0 & \text{if } s, t \in T_i^m \text{ for some } i \\ 1 & \text{otherwise.} \end{cases}$$

Define $\rho(s,t) := \sum_{m=1}^{\infty} 2^{-m} \rho_m(s,t)$. So then $\rho - \text{diam}(T_i^m) \le \sum_{i=1}^m 0 + \sum_{i=m+1}^{\infty} 2^i = 2^{-m}$. Let $t_{i,m} \in T_i^m$ (arbitrary) and define

$$T_0 := \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{k_m} \{t_{i,m}\}$$

then T_0 is countable and dense in T for ρ -metric. Moreover, T is totally bounded in the ρ -metric.

Part 2: Use metric ρ to extend process to $\mathcal{C}(T,\mathbb{R})$.

Part 3: Show that $X_n \xrightarrow{d} X$ is the space $L_{\infty}(T)$. Use equicontinuity to approximate X_n, X with finite partitions