
Stats 300b: Theory of Statistics Winter 2017

Lecture 12 – February 15

Lecturer: John Duchi Scribe: Emily Diana

� Warning: these notes may contain factual errors

Reading: HDP Ch.8, VdV 18-19

Outline:

• Sub-Gaussian Processes

• Uniform Entropy

• VC Classes

Recap : Process {xt}t∈T is p-sub-Gaussian if E[exp(λ(xs − xt))] ≤ λ2p(s,t)2

2 )] for all s, t ∈ T.

Example 1: : (Canonical symmetrized empirical process)

Let xi
i.i.d∼ P and consider supf∈F (Pnf − Pf). Then,

E[||Pn − P ||F ] ≤ 2E[sup
f∈F
| 1
n

n∑
1

εif(xi)] = 2E[E[sup
f∈F
| 1
n

n∑
i

εif(xi)]|x]

Fix x1:n ∈ X n and consider the process Zf := 1√
(n)

∑n
i=1 f(xi). Letting f, q ∈ F ,

E[exp(λ(Zf−Zg))] =
n∏
i=1

E[exp(
λ√
n
εi(f(xi)−g(xi))] ≤ exp(

λ2

2n

n∑
i=1

(f(xi)−g(xi))
2) = exp(λ22||f−g||2L1(Pn))

Remark That is, {Zf}f∈F is a || · ||L2(Pn)-sub-Gaussian process. Note that supf∈F | 1n
∑n

i=1 is a
sub-Gaussian process with respect to the L2(Pn) norm, and

E[sup
f∈F
|Pnf − Pf |] ≤

1√
n

2E[E[supf∈F |
1√
n

n∑
i=1

εif(xi)|x|]]

Goal 1 Our first goal for this lecture is to upper bound the expected suprema of sub-gaussian
processes. Recall that if F is bounded by B, then P(||Pn−P ||F ≥ E[||Pn−P ||F ] + 1 ≤ exp(−2nt2

B2 ),
using Bounded Difference, which we proved last time.

New Material: Chaining (Dudley)
Let {Xt}t∈T be ρ-sub-Gaussian separable and mean-zero, i.e. E[Xt] = 0. The idea is to control

supt∈TXt by finer and finer approximations to the supremum. We can do this because the process
is separable. Let T0, T1, T2, ...T be a sequence of covers of T , where T = minimal 2−k diam(T )
cover of T in the metric (or semimetric) ρ, where diam(T ) := sups,t∈T ρ(s, t) (assumed finite),
T0 = {t0}, and ρ(t0, t) ≤ diam(T ) ∀t ∈ T .

For any t ∈ T , consider sequences t0, t1, ..., tk, ... → t where tk ∈ Tk ∀k ∈ N. Let πi(t) =

1



arg min
ti∈Ti

ρ(ti, t) be the closest point to t in Ti. Fix any k ∈ N. Then xi = xπk−1(t) + xt − xπk−1t).

Let πi(t) := πi(πi+1(...(πk−1(t))...) (a concatenation of projections). Observe that

xt =

k∑
i=1

xiπk(t)− xi−1
πk

(t) + x0
π(t) =

k∑
i=1

xiπk(t)− xi−1
πk

(t) + xt0

as πkk(t) = t. This is the ”chain.”

Remark For any k ∈ N, max
t∈T

(xt) ≤ max
t∈T

(xiπk(t) − xi−1
πk

(t)) + x0
π(t). How many points are

there in this maximum? πik(t) takes values in Ti and πi−1
k (t) = πi−1(πk

i(t)) is a deterministic
function of πik(t). So this is really, at ”worst”, a maximum over points in a set Ti.

We know that if D = diam(T ), ρ(πii(t), π
i−1
k (t)) ≤ 21−iD as πi−1

k (t) = πi−1(πik(t)), Ti−1 is
a 21−i diameter cover of T. Then,

max
t∈T

xt ≤
k∑
i=1

max
t∈T

(xt − xπi−1(t)) + x0

where t ∈ T max(xt − xπi−1(t)) is a finite maximum of 21−iD-sub-Gaussian random variables.
Recall that if {Yi}Ni=1 are σ2-sub-Gaussian, then

E[max
i

(Yi)] ≤
√

(2σ2 log(N))

E[max
t∈Ti

(xt − xπi−1(t))] ≤
√

41−i2D2 log |Ti|

where Card(Ti) = N (T, ρ, 2−iD). Then,

E[max
t∈Tk

(xt)] ≤
k∑
i=1

√
8 · 4−1D2 logN (2−iD)

= 2
√

(2)D

k∑
i=1

2−i
√

logN (D, 2−i)

Note tht we can think of this as a Riemann integral, so

E[max
t∈Tk

(xt)] ≤ 2
√

(2)D
k∑
i=1

2−i
√

logN (D, 2−i)

≤ 4
√

2D

∞∑
i=1

∫ 2−i

2−i+1

√
logN (Dε)dε

= 4
√

2D

∫ 1

0

√
logN (Dε)dε

= 4
√

2

∫ diam(T )

0

√
logN (T, ρ, ε)dε
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where the last equality comes from substituting ε for Dε and letting D = diam(T ).
Finally, note that maxt∈Tk∪T0(xt − xt0) is non-negative, so Fatou’s lemma implies that

E[sup
t∈Tk

(xt)] ≤ 4
√

2

∫ diam(T )

0

√
logN (T, ρ, ε)dε

Definition 0.1. For a metric space (T, ρ) with finite ρ-diameter J(T, ρ) :=
∫ diam(T )

0

√
logN (T, ρ, ε)dε

is Dudley’s entropy integral.

Theorem 1. Let {Xt}t∈T be a separable ρ-sub-Gaussian process. Then E[supt∈T (Xt)] ≤ C ·J(T, ρ),
where C <∞ is a numerical constant.

Examples How do we control entropy integrals? (Hint: use log (1 + x) ≤ x) for small x)
Example 2: Let F := {l(θ, ·)}θ∈Θ, a collection of losses. For each x ∈ X l(·, x) is L(x)-Lipschitz

with respect to || · || in the first argument. Assume logN (Θ, || · ||, ε) ≤ d(log (1 + diam(Θ)
ε )). We

know by the entropy integral and symmetrization

E[||Pn − P ||F ] ≤ C · E[

∫ ∞
0

√
logN (F,L2(Pn), ε)dε]

Remark ||l(t, ·)−l(s, ·)||L2(Pn) ≤
√

(logN (F , L2(Pn), ε)dε by L(x)-Lipschitz. Thus, logN (F , L2(Pn), ε) =

0 if ε ≥ diam(Θ)
√
PnL2. Also, logN (F , || · ||PnL2 , ε) ≤ logN (Θ, || · ||, ε√

PnL2 )

So, we have

E[

∫ ∞
0

√
logN (F,L2(Pn), ε)dε] ≤ E[

∫ √PnL2diam(Θ)

0

√
logN (Θ, || · ||, ε√

PnL2
)dε]

= diam(Θ)E[
√
PnL2

∫ 1

0

√
logN (Θ, Pu)du]

where u = ε
diam

√
PnL2

≤ diam(Θ)E[L(x)2]
1
2

∫ 1

0

√
d log (1 +

1

u
)du

≤ diam(Θ)E[L(x)2]
1
2

∫ 1

0

√
d

u
du

≤ diam(Θ)E[L(x)2]
1
2

√
d

Next Goal Give classes F for which we can bound supQN (F , L2(Q), ε).

VC Classes Big example of classes allowing uniform bounds on entropy numbers.

Definition 0.2. Let C be a collection of sets and X = x1, ....xn. A vector y ∈ {±1}n is a labeling
of X. We say C shatters X if for all labelings y ∈ {±1}n, ∃ a set A ∈ C such that xi ∈ A ir yi = +1
and xi /∈ A if yi = −1.
Example 3: Let x1, x2, x3 ∈ R3 not collinear. C=Half-spaces in R2. For any labeling, these points
can be shattered.
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Definition 0.3. Given C ⊂ 2X , the shattering coefficient of C on x1, x2, ...xn is ∆n(C, x1:n) :=
card{A ∩ x1, ....xn : A ∈ C} = the number of labelings of x1:n that C gives.

The VC-dimension (Vapnik-Chervonenkis) of C is
V C(C) := sup{n ∈ N : maxX1:n∈Xn ∆n(C, x1:n) = 2n} = the size of the largest set of points that C
ca shatter.

Lemma 2. Sauer-Shelah lemma For any class C of sets,

max
x1:n∈Xn

∆n(C, x1:n) ≤
V C(C)∑
j=0

(
n

j

)
= O(nV C(C))

Consequence: If maxx1:n∈Xn ∆n(C, x1:n) < 2n, then V C(C) < n and

∆n(C, x1:n) ≤ O(1) · nV C(C)

. Additional lectures notes on the course website provide a further reference on this topic.
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