Stats 300b: Theory of Statistics

Winter 2017

Lecture 12 – February 15

Lecturer: John Duchi

Scribe: Emily Diana

Warning: these notes may contain factual errors

Reading: HDP Ch.8, VdV 18-19

Outline:

- Sub-Gaussian Processes
- Uniform Entropy
- VC Classes

Recap : Process $\{x_t\}_{t \in T}$ is p-sub-Gaussian if $\mathbb{E}[\exp(\lambda(x_s - x_t))] \leq \frac{\lambda^2 p(s,t)^2}{2})]$ for all $s, t \in T$.

Example 1: : (Canonical symmetrized empirical process) Let $x_i \stackrel{i.i.d}{\sim} P$ and consider $\sup_{f \in F} (P_n f - P f)$. Then,

$$\mathbb{E}[||P_n - P||_{\mathcal{F}}] \le 2\mathbb{E}[\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{1}^n \epsilon_i f(x_i)] = 2\mathbb{E}[\mathbb{E}[\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i}^n \epsilon_i f(x_i)]|x]$$

Fix $x_{1:n} \in \mathcal{X}^n$ and consider the process $Z_f := \frac{1}{\sqrt{(n)}} \sum_{i=1}^n f(x_i)$. Letting $f, q \in \mathcal{F}$,

$$\mathbb{E}[exp(\lambda(Z_f - Z_g))] = \prod_{i=1}^n \mathbb{E}[\exp(\frac{\lambda}{\sqrt{n}}\epsilon_i(f(x_i) - g(x_i))] \le \exp(\frac{\lambda^2}{2n}\sum_{i=1}^n (f(x_i) - g(x_i))^2) = \exp(\lambda^2 2||f - g||_{L_1(P_n)}^2)$$

Remark That is, $\{Z_f\}_{f\in\mathcal{F}}$ is a $||\cdot||_{L_2(P_n)}$ -sub-Gaussian process. Note that $\sup_{f\in\mathcal{F}}|\frac{1}{n}\sum_{i=1}^n$ is a sub-Gaussian process with respect to the $L_2(P_n)$ norm, and

$$\mathbb{E}[\sup_{f \in \mathcal{F}} |P_n f - Pf|] \le \frac{1}{\sqrt{n}} 2\mathbb{E}[\mathbb{E}[\sup_{f \in \mathcal{F}} |\frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(x_i) |x|]]$$

Goal 1 Our first goal for this lecture is to upper bound the expected suprema of sub-gaussian processes. Recall that if \mathcal{F} is bounded by B, then $\mathbb{P}(||P_n - P||_{\mathcal{F}} \ge \mathbb{E}[||P_n - P||_{\mathcal{F}}] + 1 \le \exp(\frac{-2nt^2}{B^2})$, using Bounded Difference, which we proved last time.

New Material: Chaining (Dudley)

Let $\{X_t\}_{t\in\mathcal{T}}$ be ρ -sub-Gaussian separable and mean-zero, i.e. $\mathbb{E}[X_t] = 0$. The idea is to control $\sup_{t\in\mathcal{T}}X_t$ by finer and finer approximations to the supremum. We can do this because the process is separable. Let $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \dots \mathcal{T}$ be a sequence of covers of \mathcal{T} , where $\mathcal{T} = \min 2^{-k} \operatorname{diam}(\mathcal{T})$ cover of \mathcal{T} in the metric (or semimetric) ρ , where $\operatorname{diam}(\mathcal{T}) := \sup_{s,t\in\mathcal{T}}\rho(s,t)$ (assumed finite), $\mathcal{T}_0 = \{t_0\}$, and $\rho(t_0,t) \leq \operatorname{diam}(\mathcal{T}) \forall t \in \mathcal{T}$.

For any $t \in \mathcal{T}$, consider sequences $t_0, t_1, ..., t_k, ... \to t$ where $t_k \in \mathcal{T}_k \ \forall k \in \mathbb{N}$. Let $\pi_i(t) =$

 $\arg\min_{t_i\in\mathcal{T}_i}\rho(t_i,t) \text{ be the closest point to } t \text{ in } \mathcal{T}_i. \text{ Fix any } k\in\mathbb{N}. \text{ Then } x_i = x_{\pi_{k-1}(t)} + x_t - x_{\pi_{k-1}(t)}.$ Let $\pi^i(t) := \pi_i(\pi_{i+1}(\dots(\pi_{k-1}(t))\dots))$ (a concatenation of projections). Observe that

$$x_t = \sum_{i=1}^k x_{\pi_k}^i(t) - x_{\pi_k}^{i-1}(t) + x_{\pi}^0(t) = \sum_{i=1}^k x_{\pi_k}^i(t) - x_{\pi_k}^{i-1}(t) + x_{t_0}^i(t)$$

as $\pi_k^k(t) = t$. This is the "chain."

Remark For any $k \in \mathbb{N}$, $\max_{t \in \mathcal{T}} (x_t) \leq \max_{t \in \mathcal{T}} (x_{\pi_k}^i(t) - x_{\pi_k}^{i-1}(t)) + x_{\pi}^0(t)$. How many points are there in this maximum? $\pi_k^i(t)$ takes values in \mathcal{T}_i and $\pi_k^{i-1}(t) = \pi_{i-1}(\pi_k^i(t))$ is a deterministic function of $\pi_k^i(t)$. So this is really, at "worst", a maximum over points in a set \mathcal{T}_i .

We know that if D = diam(T), $\rho(\pi_i^i(t), \pi_k^{i-1}(t)) \le 2^{1-i}D$ as $\pi_k^{i-1}(t) = \pi_{i-1}(\pi_k^i(t))$, T_{i-1} is a 2^{1-i} diameter cover of T. Then,

$$\max_{t \in \mathcal{T}} x_t \le \sum_{i=1}^k \max_{t \in \mathcal{T}} (x_t - x_{\pi_{i-1}}(t)) + x_0$$

where $t \in \mathcal{T} \max(x_t - x_{\pi_{i-1}}(t))$ is a finite maximum of $2^{1-i}D$ -sub-Gaussian random variables. Recall that if $\{Y_i\}_{i=1}^N$ are σ^2 -sub-Gaussian, then

$$\mathbb{E}[\max_{i}(Y_{i})] \leq \sqrt{(2\sigma^{2}\log(N))}$$
$$\mathbb{E}[\max_{t \in T_{i}}(x_{t} - x_{\pi_{i-1}}(t))] \leq \sqrt{4^{1-i}2D^{2}\log|T_{i}|}$$

where $Card(T_i) = \mathcal{N}(T, \rho, 2^{-i}D)$. Then,

$$\mathbb{E}[\max_{t \in T_k}(x_t)] \le \sum_{i=1}^k \sqrt{8 \cdot 4^{-1} D^2 \log \mathcal{N}(2^{-i}D)}$$
$$= 2\sqrt{2} D \sum_{i=1}^k 2^{-i} \sqrt{\log \mathcal{N}(D, 2^{-i})}$$

Note that we can think of this as a Riemann integral, so

$$\mathbb{E}[\max_{t \in T_k}(x_t)] \le 2\sqrt{(2)}D\sum_{i=1}^k 2^{-i}\sqrt{\log \mathcal{N}(D, 2^{-i})}$$
$$\le 4\sqrt{2}D\sum_{i=1}^\infty \int_{2^{-i+1}}^{2^{-i}}\sqrt{\log \mathcal{N}(D_\epsilon)}d\epsilon$$
$$= 4\sqrt{2}D\int_0^1\sqrt{\log \mathcal{N}(D_\epsilon)}d\epsilon$$
$$= 4\sqrt{2}\int_0^{diam(T)}\sqrt{\log \mathcal{N}(T, \rho, \epsilon)}d\epsilon$$

where the last equality comes from substituting ϵ for D_{ϵ} and letting D = diam(T). Finally, note that $\max_{t \in T_k \cup T_0} (x_t - x_{t_0})$ is non-negative, so Fatou's lemma implies that

$$\mathbb{E}[\sup_{t \in T_k} (x_t)] \le 4\sqrt{2} \int_0^{diam(T)} \sqrt{\log \mathcal{N}(T, \rho, \epsilon)} d\epsilon$$

Definition 0.1. For a metric space (T, ρ) with finite ρ -diameter $J(T, \rho) := \int_0^{diam(T)} \sqrt{\log \mathcal{N}(T, \rho, \epsilon)} d\epsilon$ is Dudley's entropy integral.

Theorem 1. Let $\{X_t\}_{t\in T}$ be a separable ρ -sub-Gaussian process. Then $\mathbb{E}[\sup_{t\in T}(X_t)] \leq C \cdot J(T, \rho)$, where $C < \infty$ is a numerical constant.

Examples How do we control entropy integrals? (Hint: use $\log (1 + x) \le x$) for small x) **Example 2:** Let $\mathcal{F} := \{l(\theta, \cdot)\}_{\theta \in \Theta}$, a collection of losses. For each $x \in X$ $l(\cdot, x)$ is $\mathcal{L}(x)$ -Lipschitz with respect to $|| \cdot ||$ in the first argument. Assume $\log \mathcal{N}(\Theta, || \cdot ||, \epsilon) \le d(\log (1 + \frac{diam(\Theta)}{\epsilon}))$. We know by the entropy integral and symmetrization

$$\mathbb{E}[||P_n - P||_{\mathcal{F}}] \le C \cdot \mathbb{E}[\int_0^\infty \sqrt{\log \mathcal{N}(F, L_2(P_n), \epsilon)} d\epsilon]$$

Remark $||l(t,\cdot)-l(s,\cdot)||_{L_2(P_n)} \leq \sqrt{(\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon \ by \ L(x) - Lipschitz.$ Thus, $\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon) = 0$ if $\epsilon \geq diam(\Theta)\sqrt{P_nL^2}$. Also, $\log \mathcal{N}(\mathcal{F}, ||\cdot||_{P_nL^2}, \epsilon) \leq \log \mathcal{N}(\Theta, ||\cdot||, \frac{\epsilon}{\sqrt{P_nL^2}})$ So, we have

$$\mathbb{E}[\int_{0}^{\infty} \sqrt{\log \mathcal{N}(F, L_{2}(P_{n}), \epsilon)} d\epsilon] \leq \mathbb{E}[\int_{0}^{\sqrt{P_{n}L^{2}}diam(\Theta)} \sqrt{\log \mathcal{N}(\Theta, ||\cdot||, \frac{\epsilon}{\sqrt{P_{n}L^{2}}})} d\epsilon]$$
$$= diam(\Theta)\mathbb{E}[\sqrt{P_{n}L^{2}} \int_{0}^{1} \sqrt{\log \mathcal{N}(\Theta, P_{u})} du]$$

where $u = \frac{\epsilon}{diam\sqrt{P_nL^2}}$

$$\leq diam(\Theta)\mathbb{E}[L(x)^2]^{\frac{1}{2}} \int_0^1 \sqrt{d\log\left(1+\frac{1}{u}\right)} du$$
$$\leq diam(\Theta)\mathbb{E}[L(x)^2]^{\frac{1}{2}} \int_0^1 \sqrt{\frac{d}{u}} du$$
$$\leq diam(\Theta)\mathbb{E}[L(x)^2]^{\frac{1}{2}} \sqrt{d}$$

Next Goal Give classes \mathcal{F} for which we can bound $\sup_{Q} \mathcal{N}(\mathcal{F}, L_2(Q), \epsilon)$.

VC Classes Big example of classes allowing uniform bounds on entropy numbers.

Definition 0.2. Let C be a collection of sets and $X = x_1, ..., x_n$. A vector $y \in \{\pm 1\}^n$ is a labeling of X. We say C shatters X if for all labelings $y \in \{\pm 1\}^n$, $\exists a \text{ set } A \in C$ such that $x_i \in A$ if $y_i = +1$ and $x_i \notin A$ if $y_i = -1$.

Example 3: Let $x_1, x_2, x_3 \in \mathbb{R}^3$ not collinear. C=Half-spaces in \mathbb{R}^2 . For any labeling, these points can be shattered.

Definition 0.3. Given $\mathcal{C} \subset 2^{\mathcal{X}}$, the shattering coefficient of \mathcal{C} on $x_1, x_2, ..., x_n$ is $\Delta_n(\mathcal{C}, x_{1:n}) := card\{A \cap x_1, ..., x_n : A \in \mathcal{C}\} = the number of labelings of <math>x_{1:n}$ that \mathcal{C} gives.

The VC-dimension (Vapnik-Chervonenkis) of C is $VC(C) := \sup\{n \in \mathbb{N} : \max_{X_{1:n} \in \mathcal{X}^n} \Delta_n(C, x_{1:n}) = 2^n\} = \text{the size of the largest set of points that } C$ ca shatter.

Lemma 2. Sauer-Shelah lemma For any class C of sets,

$$\max_{x_{1:n}\in X^n} \Delta_n(\mathcal{C}, x_{1:n}) \le \sum_{j=0}^{VC(\mathcal{C})} \binom{n}{j} = O(n^{VC(\mathcal{C})})$$

Consequence: If $\max_{x_{1:n} \in X^n} \Delta_n(\mathcal{C}, x_{1:n}) < 2^n$, then $VC(\mathcal{C}) < n$ and

$$\Delta_n(\mathcal{C}, x_{1:n}) \le O(1) \cdot n^{VC(\mathcal{C})}$$

. Additional lectures notes on the course website provide a further reference on this topic.