Stats 300b: Theory of Statistics Winter 2017

Lecture 12 — February 15

Lecturer: John Duchi Scribe: Emily Diana

g% Warning: these notes may contain factual errors
Reading: HDP Ch.8, VdV 18-19

Outline:
e Sub-Gaussian Processes
e Uniform Entropy
e VC Classes

Recap : Process {x;}ier is p-sub-Gaussian if Elexp(A(zs — x¢))] < M)] for all s,t € T.

Example 1: : (Canonical symmetrized empirical process)
Let z; %" P and consider supsep(Pnf — Pf). Then,

n n
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El|| P, — P < 2E[sup |— € f(x;)] = 2E|E|sup |— e flxi)l|x
(I 7] < [feg\nz; f ()] [ [feg!nz; f(@i)]|x]

Fix x1., € X™ and consider the process Z; := \/ﬁ Yoy f(xi). Letting f,q € F,

n 2 n

Elezp(M(Z5—24))] = HE[GXP(%QU(%)—Q(%))] < eXp(% Z(f($i)—9($i))2) = exp(>\22|\f—g|!%1(Pn))
i=1 =1

Remark That is, {Zy}rer is a || - ||,(p,)-sub-Gaussian process. Note that sup e L3 isa

sub-Gaussian process with respect to the Lo(P,) norm, and

Blsup | P, f - P < \}ﬁm[E[supfeﬂjﬁ ; e.f (z)lz[]

Goal 1 Our first goal for this lecture is to upper bound the expected suprema of sub-gaussian

2
processes. Recall that if 7 is bounded by B, then P(||P, — P||7 > E[||P, — P||#] +1 < exp(=31-),
using Bounded Difference, which we proved last time.

New Material: Chaining (Dudley)

Let {X;}ieT be p-sub-Gaussian separable and mean-zero, i.e. E[X;] = 0. The idea is to control
supscT Xt by finer and finer approximations to the supremum. We can do this because the process
is separable. Let 7o, 71, 72,...7 be a sequence of covers of 7, where 7 = minimal 27% diam(T)
cover of T in the metric (or semimetric) p, where diam(T) := supg 7 p(s,t) (assumed finite),
To = {to}, and p(to,t) < diam(T) Vt € T.

For any t € T, consider sequences tg,t1,...,tx,... — t where tx, € T Vk € N. Let m;(t) =



arg I{rlei%p(ti, t) be the closest point to ¢ in 7;. Fix any k € N. Then x; = x, () + Tt — T, 4)-
Let (t) := mi(miz1(...(mx—1(¢))...) (a concatenation of projections). Observe that

k

k
ro= 3wk (1) — i (1) + a0 = S al (8) — i (1) +
=1

=1

as 7k (t) = t. This is the ”chain.”

Remark For any k € N, r;aaTX(a:t) < 1}12%)_((.%2% (t) — #i1(t)) + 29(t). How many points are
€ €

there in this maximum? 7} (¢) takes values in 7; and 7 *(t) = m_1(m'(t)) is a deterministic

function of 7} (¢). So this is really, at “worst”, a maximum over points in a set 7;.

We know that if D = diam(T), p(ﬁf(t),ﬂz_l(t)) < 217D as 772_1(75) = mi_1(mi(t)), Ti—1 is
a 2!7% diameter cover of T. Then,

k

< — ) t
maxr, < ‘ rtrgg((xt Ty () + 20
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where t € T max(x; — T, , (t)) is a finite maximum of 2!~ D-sub-Gaussian random variables.
Recall that if {Y;}¥, are o2-sub-Gaussian, then

E[m@aX(Y;)] </ (20%10g(N))

Elmax(e, — ar,, (1)) < /412D log T3

where Card(T;) = N(T, p,27'D). Then,

k
Emax(x;)] < 3 1/8 - 4-1D2log (27 D)
=1

teTy,

k
=2\/(2) D> 27"\ /log N'(D,27)

i=1

Note tht we can think of this as a Riemann integral, so

k
Emax(z)] < 2/(2)D ) 27"\ /log N(D,27)
=1

—1

§4\@Di/2 V1og N (D, )de
=127

141

= 42D /1 V1og N(D,)de
0

diam(T

)
=42 V1og N (T, p, €)de

0



where the last equality comes from substituting e for D, and letting D = diam(T).
Finally, note that max;er,un, (2 — ®y,) is non-negative, so Fatou’s lemma implies that

diam(T)
Efsup(z;)] < 4\@/ V1og N(T', p, €)de
0

teTy,

Definition 0.1. For a metric space (T, p) with finite p-diameter J(T, p) dwm \/log/\/’ T, p,€)de
1s Dudley’s entropy integral.

Theorem 1. Let {X;}icr be a separable p-sub-Gaussian process. Then E[sup,cr(Xy)] < C-J(T), p),
where C' < o0 is a numerical constant.

Examples How do we control entropy integrals? (Hint: use log (1 + x) < x) for small x)
Example 2: Let F := {l(0,-)}oco, a collection of losses. For each x € X I(-,x) is L(x)-Lipschitz
with respect to || - || in the first argument. Assume logN(O,]|-]|,€) < d(log (1 + %@))). We
know by the entropy integral and symmetrization

(P~ Plls < Bl [~ VIog NP, La(F), 4

Remark  [|l(t,-)—I(s, )|, (p,) < /(0g N'(F, La(Py), €)de by L(x)-Lipschitz. Thus, log N (F, La(Py), €) =
0 if € > diam(©)v/ P, L?. Also, logN(F,|| - ||p,12,€) <logN (O, ]| -], ﬁ)

So, we have

/ VIog N(F, Ly(P,), €)de] < E|

VP, L2diam(©)
/ )de

JlosN @Il s

0

= diam(©)E[v/P, L> / 1 V1og N (O, P,)du]
0

/ \/dlog ( 1~|—
< diam(© %/ \/>du

< diam(©)E[L(x)

_ €
where u = prp—s oy

l\)\»—a

< diam(©

Next Goal Give classes F for which we can bound supg N (F, La(Q), €).

VC Classes Big example of classes allowing uniform bounds on entropy numbers.

Definition 0.2. Let C be a collection of sets and X = x1,....xy. A vector y € {£1}" is a labeling
of X. We say C shatters X if for all labelings y € {£1}", 3 a set A € C such that z; € A iry; = +1
and x; ¢ A if y; = —

Example 3: Let x1, 29,23 € R? not collinear. C=Half-spaces in R?. For any labeling, these points
can be shattered.



Definition 0.3. Given C C 2%, the shattering coefficient of C on x1, 3, ...%, is Ap(C,21.0) =
card{ANzy,...xy : A € C} = the number of labelings of x1., that C gives.

The VC-dimension (Vapnik-Chervonenkis) of C is
VC(C) :=sup{n € N : maxx,,, cxn An(C,z1.n) = 2"} = the size of the largest set of points that C
ca shatter.

Lemma 2. Sauer-Shelah lemma For any class C of sets,

VC(C) n
Y < _ VC(C)

§=0
Consequence: If max,, cxn An(C,71.5) <27, then VCO(C) < n and
An(ca :El:n) < O(l) . nVC(C)

. Additional lectures notes on the course website provide a further reference on this topic.



