Lecture 11 - Feb 13

Lecturer: John Duchi
Scribe: Elena Tuzhilina, Suyash Gupta

Warning: these notes may contain factual errors

Reading: VdV ch. 18-19, HDP ch. 8

Outline:

- Bounded differences and Azuma-Hoeffding inequality
- Rademacher and sub-Gaussian processes
- Entropy integrals and chaining

Recap Using symmetrization+covering/metric entropies to give ULLNs. Our goal is to prove $\mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \geq t\right) \rightarrow 0$ as $n \rightarrow \infty$. Denote $P_{n}^{0}=\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(x_{i}\right)$, where ϵ_{i} are i.i.d Redemacher random variables. Then for any $\epsilon>0$

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \geq t\right) \leq \frac{\mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}\right]}{t} \leq \frac{2 \mathbb{E}\left[\left\|P_{n}^{0}\right\|_{\mathcal{F}}\right]}{t} \lesssim \frac{\sqrt{\log N\left(\mathcal{F}, L_{1}\left(P_{n}\right), t\right)}+\epsilon}{\sqrt{n} t} .
$$

If $\log N=o(n)$, then the RHS tends to 0 .
Example: $\mathcal{F}=\{1$-Lipschitz functions on $[0,1]$ with $f(0)=0\}$. How to calculate the covering number in sup-norm?
Fix ϵ and construct family of piecewise-linear functions with constant slope $(-1,0$ or +1$)$ in each $[0, \epsilon],[\epsilon, 2 \epsilon], \ldots$. Since at each position $\{0, \epsilon, 2 \epsilon, \ldots\}$ we have three choices (up, down, flat) and we have $\frac{1}{\epsilon}$ "choice" points, then we have $3^{\frac{1}{\epsilon}}$ such functions. If $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ denotes the norm, then

$$
\log N\left(\mathcal{F},\|\cdot\|_{\infty}, \epsilon\right) \asymp \frac{1}{\epsilon} \log 3 \text { and } \log N\left(\mathcal{F}, L_{1}\left(P_{n}\right), \epsilon\right) \lesssim \frac{1}{\epsilon} .
$$

Remark If $\mathcal{F}=\left\{1\right.$-Lipschitz functions on $\left.[0,1]^{d}\right\}$ then $\log N\left(\mathcal{F},\|\cdot\|_{\infty}, \epsilon\right) \sim\left(\frac{1}{\epsilon}\right)^{d}$ and we still get uniform law but exponentially in d (slower).

1 Concentration inequalities(revisited)

Goal: Often we want to understand concentration of more sophisticated things than averages, e.g. $\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(X_{i}\right)-P f\right)$.

Definition 1.1. A sequence $\left\{X_{i}\right\}$ adapted to a filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ (increasing sequence of σ-fields) is a Martingale difference sequence if

- $X_{i} \in \mathcal{F}_{i}$ for any $i \in \mathbb{N}$
- $\mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$ for any $i \in \mathbb{N}$.

Recall $M_{n}=\sum_{i=1}^{n} X_{i}$ is associated martingale ($X_{i}=M_{i}-M_{i-1}$).
Definition 1.2. Let X_{i} be a MGD, it is σ_{i}^{2}-sub-Gaussian $\boldsymbol{M G D}$ if $\mathbb{E}\left[\exp \left(\lambda X_{i}\right) \mid \mathcal{F}_{i-1}\right] \leq \exp \left(\frac{\lambda^{2} \sigma_{i}^{2}}{2}\right)$ for any $i \in \mathbb{N}$.

Example: If $\left|X_{i}\right| \leq c_{i}$, then $\left\{X_{i}\right\}$ is c_{i}^{2}-sub-Gaussian MGD.
Theorem 1. (Azuma-Hoeffding) If $\left\{X_{i}\right\}$ is σ_{i}^{2}-sub-Gaussian $M G D$, then for $t \geq 0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right) \text { and } \mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq-t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right)
$$

Proof Note that $\sum_{i=1}^{n} X_{i}$ is $\sum_{i=1}^{n} \sigma_{i}^{2}$-sub-Gaussian, as
$\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right)\right]=\mathbb{E}\left[\prod_{i=1}^{n-1} e^{\lambda X_{i}} \mathbb{E}\left[e^{\lambda X_{n}} \mid \mathcal{F}_{n-1}\right]\right] \leq \mathbb{E}\left[\prod_{i=1}^{n-1} e^{\lambda X_{i}}\right] \exp \left(\frac{\lambda^{2} \sigma_{n}^{2}}{2}\right) \leq \exp \left(\frac{\lambda}{2} \sum_{i=1}^{n} \sigma_{i}^{2}\right)$

2 Arbitrary function of independent random variables

Let $\left\{X_{i}\right\}_{i=1}^{n}$ be independent, $X_{i} \in \mathcal{X}$. Let $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$. Can we control $f\left(X_{1: n}\right)-\mathbb{E}[f]$?

2.1 Doob martingale

Idea: Turn $f-\mathbb{E}[f]$ into n summands with Martingale difference structure.
Let $\mathcal{F}_{i}=\sigma\left(X_{1}, \ldots, X_{i}\right)$ is a σ-field generated by X_{1}, \ldots, X_{n}. Define

$$
D_{i}=\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i}\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i-1}\right]
$$

Note that $\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{n}\right]=f\left(X_{1: n}\right)$ and $\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{0}\right]=\mathbb{E}[f]$. Therefore,

$$
\sum_{i=1}^{n} D_{i}=f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right] .
$$

Also $\mathbb{E}\left[D_{i} \mid \mathcal{F}_{i-1}\right]=\mathbb{E}\left[\mid \mathbb{E}\left[f \mid \mathcal{F}_{i}\right] \mathcal{F}_{i-1}\right]-\mathbb{E}\left[f \mid \mathcal{F}_{i-1}\right]=0$.
Observation $\quad D_{i}$ is a MD sequence adapted to $\left\{\mathcal{F}_{i}\right\}$, where $\mathcal{F}_{i}=\sigma\left(X_{1}, \ldots, X_{i}\right)$.

2.2 Bounded differences

Theorem 2. Let all f satisfy c_{i} bounded differences $\left(\left|f\left(X_{1:(i-1)}, x_{i}, X_{i+1: n}\right)-f\left(X_{1:(i-1)}, x_{i}^{\prime}, X_{i+1: n}\right)\right| \leq\right.$ $\left.c_{i}\right)$. Then $f-P f$ is $\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$ subgaussian..
Proof Apply Azuma-Hoeffding inequality to associated Doob martingale.

$$
D_{i}=\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i}\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i-1}\right] .
$$

Let

$$
\begin{aligned}
U_{i} & =\sup _{x_{i}^{\prime}}\left[\int f\left(X_{1:(i-1)}, x_{i}^{\prime}, X_{i+1: n}\right) \mathrm{d} P\left(X_{i+1: n}\right)-\int f\left(X_{1:(i-1)}, x_{i}, X_{i+1: n}\right) \mathrm{d} P\left(x_{i}\right) \mathrm{d} P\left(x_{i+1: n}\right)\right] \\
L_{i} & =\inf _{x_{i}^{\prime}}\left[\int f\left(X_{1:(i-1)}, x_{i}^{\prime}, X_{i+1: n}\right) \mathrm{d} P\left(X_{i+1: n}\right)-\int f\left(X_{1:(i-1)}, x_{i}, X_{i+1: n}\right) \mathrm{d} P\left(x_{i}\right) \mathrm{d} P\left(x_{i+1: n}\right)\right]
\end{aligned}
$$

Observe that

$$
L_{i} \leq D_{i} \leq U_{i}
$$

and

$$
U_{i}-L_{i} \leq c_{i}
$$

so, D_{i} is $\sigma_{i}^{2}=\frac{c_{i}^{2}}{4}$ sub gaussian.

Corollary 3. (McDiarmid's inequality) If $f: \chi^{n} \mapsto \mathbb{R}$ satisfies c_{i} bounded differences then for $t \geq 0$,

$$
P\left(f\left(X_{1: n}\right)-\mathbb{E}(f) \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right) \cdot(\text { similar for lower tail })
$$

Idea Processes/functions satisfying bounded differences reduce problem of controlling tails to controlling expectations. Let $\mathcal{F} \subseteq \chi \mapsto \mathbb{R}$. Assume that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq B<\infty \forall x, x^{\prime} \in \chi
$$

Proposition 4. Both sup $f_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-P f$ and $\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-P f\right|$ satisfy $\frac{B}{n}$ bounded differences.

Proof Fix any $x_{1}, x_{2}, \ldots, x_{n}, x_{i}^{\prime} \in[n]$. Then

$$
\begin{array}{r}
\sup _{f \in \mathcal{F}}\left(\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)-P f\right)-\sup _{f \in \mathcal{F}}\left(\frac{1}{n} \sum_{j=1, j \neq i}^{n} f\left(x_{j}\right)+f\left(x_{i}^{\prime}\right)-P f\right) \\
\leq \sup _{f \in \mathcal{F}}\left[\left(\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)-P f\right)-\left(\frac{1}{n} \sum_{j=1, j \neq i}^{n} f\left(x_{j}\right)+f\left(x_{i}^{\prime}\right)-P f\right)\right] \\
=\sup _{f \in \mathcal{F}} \frac{1}{n}\left[f\left(x_{i}\right)-f\left(x_{i}^{\prime}\right)\right] \\
\leq \frac{B}{n} .
\end{array}
$$

Corollary 5. Let $\mathcal{F} \subseteq \chi \mapsto \mathbb{R},\left|f(x)-f\left(x^{\prime}\right)\right| \leq B<\infty \forall x, x^{\prime} \in \chi$, then

$$
\begin{array}{r}
P\left(\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-P f\right| \geq \mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}\right]+t\right) \\
\leq \exp \left(-\frac{2 n t^{2}}{B^{2}}\right)
\end{array}
$$

Consequence To prove ULLN or even concentration/high probability version everything boils down to controlling $\mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}\right] \leq 2 \mathbb{E}\left[\left\|P_{n}^{o}\right\|_{\mathcal{F}}\right]=2 R_{n}((F))$ (Rademacher complexity).

3 Subgaussian Processes

Definition 3.1. Let $\left\{X_{t}\right\}_{t \in T}$ be a collection of real valued random variables. This is a Stochastic Process indexed by T.

Remark All processes we deal with in this class will be separable, i.e. there exists a countable set T^{\prime} such that $\sup _{t \in T}\left|X_{t}\right|=\sup _{t \in T^{\prime}}\left|X_{t}\right|$.

Definition 3.2. Let (T, d) be a metric space. We say $\left\{X_{t}\right\}_{t \in T}$ is a subgaussian process if

$$
\begin{equation*}
\log \mathbb{E}\left[\exp \left(\lambda\left(X_{s}-X_{t}\right)\right)\right] \leq \frac{\lambda^{2} d(s, t)^{2}}{2} \tag{1}
\end{equation*}
$$

for all $\lambda>0, s, t \in T$.
Remark One might expect a subgaussian constant σ^{2} to appear in (1), i.e. the upper bound should be $\frac{\lambda^{2} \sigma^{2} d(s, t)^{2}}{2}$, however, the metric is chosen so that the subgaussian constant is absorbed into the metric d.

Example 1:

A gaussian process is an example of a subgaussian process. To see this, let $T=\mathbb{R}^{d}$, and $Z \sim$ $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$, define $X_{t}=\langle Z, t\rangle$. Note that $X_{s}-X_{t}=\langle Z, s-t\rangle$ has a normal distribution with mean zero and variance $\|s-t\|_{2}^{2} \sigma^{2}$, therefore $\log \mathbb{E}\left[e^{\lambda\left(X_{s}-X_{t}\right)}\right] \leq \frac{1}{2} \lambda^{2} \sigma^{2}\|s-t\|_{2}^{2}$

Example 2: (Rademacher Process with a loss function) Let T be a vector space equipped with a norm $\|\cdot\|, X_{i} \in \mathcal{X}$ are random variables and $\ell: T \times \mathcal{X} \rightarrow \mathbb{R}$ is lipschitz in its first argument, meaning that

$$
|\ell(s, x)-\ell(t, x)| \leq\|t-s\| \text { for all } x \in \mathcal{X}, s, t \in T
$$

Then for $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ i.i.d. Rademacher random variables, because $\epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)$ is bounded
between $-\|s-t\|$ and $\|s-t\|$, it is subgaussian, hence

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)\right)\right] & \leq \mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)\right)\right] \mid X\right] \\
& \leq \mathbb{E}\left[\left.\exp \left(\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)^{2}\right) \right\rvert\, X\right] \\
& \leq \exp \left(\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\|t-s\|^{2}\right) \\
& =\exp \left(\frac{\lambda^{2} n\|s-t\|^{2}}{8}\right)
\end{aligned}
$$

So if $Z_{t}=\sum_{i=1}^{n} \epsilon_{i} \ell\left(t, x_{i}\right)$ then the stochastic process $\left\{X_{t}\right\}_{t \in T}$ is $\frac{n}{4}\|\cdot\|^{2}$-subgaussian.

