Stats 300b: Theory of Statistics

Winter 2018

Lecture 11 - Feb 13

Lecturer: John Duchi

Scribe: Elena Tuzhilina, Suyash Gupta

Warning: these notes may contain factual errors

Reading: VdV ch. 18-19, HDP ch. 8

Outline:

- Bounded differences and Azuma-Hoeffding inequality
- Rademacher and sub-Gaussian processes
- Entropy integrals and chaining

Recap Using symmetrization+covering/metric entropies to give ULLNs. Our goal is to prove $\mathbb{P}(\sup_{f\in\mathcal{F}} |P_nf - Pf| \ge t) \to 0$ as $n \to \infty$. Denote $P_n^0 = \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i)$, where ϵ_i are i.i.d Redemacher random variables. Then for any $\epsilon > 0$

$$\mathbb{P}(\sup_{f\in\mathcal{F}}|P_nf - Pf| \ge t) \le \frac{\mathbb{E}[||P_n - P||_{\mathcal{F}}]}{t} \le \frac{2\mathbb{E}[||P_n^0||_{\mathcal{F}}]}{t} \lesssim \frac{\sqrt{\log N(\mathcal{F}, L_1(P_n), t)} + \epsilon}{\sqrt{nt}}.$$

If $\log N = o(n)$, then the RHS tends to 0.

Example: $\mathcal{F} = \{1\text{-Lipschitz functions on } [0,1] \text{ with } f(0) = 0\}$. How to calculate the covering number in sup-norm?

Fix ϵ and construct family of piecewise-linear functions with constant slope (-1, 0 or +1) in each $[0, \epsilon], [\epsilon, 2\epsilon], \ldots$ Since at each position $\{0, \epsilon, 2\epsilon, \ldots\}$ we have three choices (up, down, flat) and we have $\frac{1}{\epsilon}$ "choice" points, then we have $3^{\frac{1}{\epsilon}}$ such functions. If $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$ denotes the norm, then

$$\log N(\mathcal{F}, ||\cdot||_{\infty}, \epsilon) \simeq \frac{1}{\epsilon} \log 3$$
 and $\log N(\mathcal{F}, L_1(P_n), \epsilon) \lesssim \frac{1}{\epsilon}$.

Remark If $\mathcal{F} = \{1\text{-Lipschitz functions on } [0,1]^d\}$ then $\log N(\mathcal{F}, || \cdot ||_{\infty}, \epsilon) \sim \left(\frac{1}{\epsilon}\right)^d$ and we still get uniform law but exponentially in d(slower).

1 Concentration inequalities(revisited)

Goal: Often we want to understand concentration of more sophisticated things than averages, e.g. $\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf)$.

Definition 1.1. A sequence $\{X_i\}$ adapted to a filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ (increasing sequence of σ -fields) is a Martingale difference sequence if

• $X_i \in \mathcal{F}_i$ for any $i \in \mathbb{N}$

• $\mathbb{E}[X_i | \mathcal{F}_{i-1}] = 0$ for any $i \in \mathbb{N}$.

Recall $M_n = \sum_{i=1}^n X_i$ is associated martingale $(X_i = M_i - M_{i-1})$.

Definition 1.2. Let X_i be a MGD, it is σ_i^2 -sub-Gaussian MGD if $\mathbb{E}[\exp(\lambda X_i)|\mathcal{F}_{i-1}] \leq \exp\left(\frac{\lambda^2 \sigma_i^2}{2}\right)$ for any $i \in \mathbb{N}$.

Example: If $|X_i| \le c_i$, then $\{X_i\}$ is c_i^2 -sub-Gaussian MGD.

Theorem 1. (Azuma-Hoeffding) If $\{X_i\}$ is σ_i^2 -sub-Gaussian MGD, then for $t \ge 0$

$$\mathbb{P}(\sum_{i=1}^{n} X_i \ge t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right) \text{ and } \mathbb{P}(\sum_{i=1}^{n} X_i \le -t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right)$$

Proof Note that $\sum_{i=1}^{n} X_i$ is $\sum_{i=1}^{n} \sigma_i^2$ -sub-Gaussian, as

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}X_{i}\right)\right] = \mathbb{E}\left[\prod_{i=1}^{n-1}e^{\lambda X_{i}}\mathbb{E}\left[e^{\lambda X_{n}}|\mathcal{F}_{n-1}\right]\right] \leq \mathbb{E}\left[\prod_{i=1}^{n-1}e^{\lambda X_{i}}\right]\exp\left(\frac{\lambda^{2}\sigma_{n}^{2}}{2}\right) \leq \exp\left(\frac{\lambda}{2}\sum_{i=1}^{n}\sigma_{i}^{2}\right)$$

2 Arbitrary function of independent random variables

Let $\{X_i\}_{i=1}^n$ be independent, $X_i \in \mathcal{X}$. Let $f : \mathcal{X}^n \to \mathbb{R}$. Can we control $f(X_{1:n}) - \mathbb{E}[f]$?

2.1 Doob martingale

Idea: Turn $f - \mathbb{E}[f]$ into n summands with Martingale difference structure. Let $\mathcal{F}_i = \sigma(X_1, \ldots, X_i)$ is a σ -field generated by X_1, \ldots, X_n . Define

$$D_i = \mathbb{E}[f(X_{1:n})|\mathcal{F}_i] - \mathbb{E}[f(X_{1:n})|\mathcal{F}_{i-1}].$$

Note that $\mathbb{E}[f(X_{1:n})|\mathcal{F}_n] = f(X_{1:n})$ and $\mathbb{E}[f(X_{1:n})|\mathcal{F}_0] = \mathbb{E}[f]$. Therefore,

$$\sum_{i=1}^{n} D_i = f(X_{1:n}) - \mathbb{E}[f(X_{1:n})].$$

Also $\mathbb{E}[D_i|\mathcal{F}_{i-1}] = \mathbb{E}[|\mathbb{E}[f|\mathcal{F}_i]\mathcal{F}_{i-1}] - \mathbb{E}[f|\mathcal{F}_{i-1}] = 0.$

Observation D_i is a MD sequence adapted to $\{\mathcal{F}_i\}$, where $\mathcal{F}_i = \sigma(X_1, \ldots, X_i)$.

2.2 Bounded differences

Theorem 2. Let all f satisfy c_i bounded differences $(|f(X_{1:(i-1)}, x_i, X_{i+1:n}) - f(X_{1:(i-1)}, x'_i, X_{i+1:n})| \le c_i)$. Then f - Pf is $\frac{1}{4} \sum_{i=1}^n c_i^2$ subgaussian.. **Proof** Apply Azuma-Hoeffding inequality to associated Doob martingale.

$$D_i = \mathbb{E}[f(X_{1:n})|\mathcal{F}_i] - \mathbb{E}[f(X_{1:n})|\mathcal{F}_{i-1}].$$

Let

$$U_{i} = \sup_{x'_{i}} \left[\int f(X_{1:(i-1)}, x'_{i}, X_{i+1:n}) \, \mathrm{d}P(X_{i+1:n}) - \int f(X_{1:(i-1)}, x_{i}, X_{i+1:n}) \, \mathrm{d}P(x_{i}) \, \mathrm{d}P(x_{i+1:n}) \right]$$

$$L_{i} = \inf_{x'_{i}} \left[\int f(X_{1:(i-1)}, x'_{i}, X_{i+1:n}) \, \mathrm{d}P(X_{i+1:n}) - \int f(X_{1:(i-1)}, x_{i}, X_{i+1:n}) \, \mathrm{d}P(x_{i}) \, \mathrm{d}P(x_{i+1:n}) \right]$$

 $Observe \ that$

$$L_i \le D_i \le U_i$$

and

 $U_i - L_i \le c_i$

so, D_i is $\sigma_i^2 = \frac{c_i^2}{4}$ sub gaussian.

Corollary 3. (McDiarmid's inequality) If $f : \chi^n \mapsto \mathbb{R}$ satisfies c_i bounded differences then for $t \geq 0$,

$$P(f(X_{1:n}) - \mathbb{E}(f) \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right) . (similar \ for \ lower \ tail)$$

Idea Processes/functions satisfying bounded differences reduce problem of controlling tails to controlling expectations. Let $\mathcal{F} \subseteq \chi \mapsto \mathbb{R}$. Assume that

$$|f(x) - f(x')| \le B < \infty \forall x, x' \in \chi.$$

Proposition 4. Both $\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(X_i) - Pf$ and $\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^{n} f(X_i) - Pf|$ satisfy $\frac{B}{n}$ bounded differences.

Proof Fix any $x_1, x_2, ..., x_n, x'_i \in [n]$. Then

$$sup_{f\in\mathcal{F}}\left(\frac{1}{n}\sum_{j=1}^{n}f(x_{j})-Pf\right)-sup_{f\in\mathcal{F}}\left(\frac{1}{n}\sum_{j=1,j\neq i}^{n}f(x_{j})+f(x_{i}')-Pf\right)$$
$$\leq sup_{f\in\mathcal{F}}\left[\left(\frac{1}{n}\sum_{j=1}^{n}f(x_{j})-Pf\right)-\left(\frac{1}{n}\sum_{j=1,j\neq i}^{n}f(x_{j})+f(x_{i}')-Pf\right)\right]$$
$$=sup_{f\in\mathcal{F}}\frac{1}{n}\left[f(x_{i})-f(x_{i}')\right]$$
$$\leq \frac{B}{n}.$$

Corollary 5. Let $\mathcal{F} \subseteq \chi \mapsto \mathbb{R}, |f(x) - f(x')| \le B < \infty \forall x, x' \in \chi, then$

$$P\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-Pf\right|\geq\mathbb{E}[||P_{n}-P||_{\mathcal{F}}]+t\right)$$
$$\leq\exp\left(-\frac{2nt^{2}}{B^{2}}\right)$$

Consequence To prove ULLN or even concentration/high probability version everything boils down to controlling $\mathbb{E}[||P_n - P||_{\mathcal{F}}] \leq 2\mathbb{E}[||P_n^o||_{\mathcal{F}}] = 2R_n((F))(Rademacher \ complexity).$

3 Subgaussian Processes

Definition 3.1. Let $\{X_t\}_{t\in T}$ be a collection of real valued random variables. This is a **Stochastic Process** indexed by T.

Remark All processes we deal with in this class will be separable, i.e. there exists a countable set T' such that $\sup_{t \in T} |X_t| = \sup_{t \in T'} |X_t|$.

Definition 3.2. Let (T, d) be a metric space. We say $\{X_t\}_{t \in T}$ is a subgaussian process if

$$\log \mathbb{E}\left[\exp\left(\lambda(X_s - X_t)\right)\right] \le \frac{\lambda^2 d(s, t)^2}{2} \tag{1}$$

for all $\lambda > 0, s, t \in T$.

Remark One might expect a subgaussian constant σ^2 to appear in (1), i.e. the upper bound should be $\frac{\lambda^2 \sigma^2 d(s,t)^2}{2}$, however, the metric is chosen so that the subgaussian constant is absorbed into the metric d.

Example 1:

A gaussian process is an example of a subgaussian process. To see this, let $T = \mathbb{R}^d$, and $Z \sim \mathcal{N}(0, \sigma^2 I_d)$, define $X_t = \langle Z, t \rangle$. Note that $X_s - X_t = \langle Z, s - t \rangle$ has a normal distribution with mean zero and variance $||s - t||_2^2 \sigma^2$, therefore $\log \mathbb{E}[e^{\lambda(X_s - X_t)}] \leq \frac{1}{2}\lambda^2 \sigma^2 ||s - t||_2^2 \clubsuit$

Example 2: (Rademacher Process with a loss function) Let T be a vector space equipped with a norm $|| \cdot ||$, $X_i \in \mathcal{X}$ are random variables and $\ell : T \times \mathcal{X} \to \mathbb{R}$ is lipschitz in its first argument, meaning that

$$|\ell(s,x) - \ell(t,x)| \le ||t-s||$$
 for all $x \in \mathcal{X}, s, t \in T$

Then for $\{\epsilon_i\}_{i=1}^n$ i.i.d. Rademacher random variables, because $\epsilon_i(\ell(t, X_i) - \ell(s, X_i))$ is bounded

between -||s - t|| and ||s - t||, it is subgaussian, hence

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}\epsilon_{i}(\ell(t,X_{i})-\ell(s,X_{i}))\right)\right] \leq \mathbb{E}\left[\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}\epsilon_{i}(\ell(t,X_{i})-\ell(s,X_{i}))\right)\right]\Big|X\right]$$
$$\leq \mathbb{E}\left[\exp\left(\frac{\lambda^{2}}{8}\sum_{i=1}^{n}(\ell(t,X_{i})-\ell(s,X_{i}))^{2}\right)\Big|X\right]$$
$$\leq \exp\left(\frac{\lambda^{2}}{8}\sum_{i=1}^{n}||t-s||^{2}\right)$$
$$= \exp\left(\frac{\lambda^{2}n||s-t||^{2}}{8}\right)$$

So if $Z_t = \sum_{i=1}^n \epsilon_i \ell(t, x_i)$ then the stochastic process $\{X_t\}_{t \in T}$ is $\frac{n}{4} || \cdot ||^2$ -subgaussian.