Stats 300b: Theory of Statistics Winter 2018

Lecture 11 — Feb 13

Lecturer: John Duchi Scribe: Elena Tuzhilina, Suyash Gupta

@ Warning: these notes may contain factual errors
Reading: VdV ch. 18-19, HDP ch. 8

Outline:
e Bounded differences and Azuma-Hoeffding inequality
e Rademacher and sub-Gaussian processes

e Entropy integrals and chaining

Recap Using symmetrization+covering/metric entropies to give ULLNs. Our goal is to prove
P(supser |Pof — Pf| > t) — 0 as n — oco. Denote P = LS €if(x;), where ¢ are ii.d Re-
demacher random variables. Then for any € > 0

— 0
P(sup|Pnf—Pf] Zt) < E[Hpnt PH]'—] < QE[H];n‘]:] < \/logN(f7L1(Pn)7t)+€‘
fer Vnt

If log N = o(n), then the RHS tends to 0.

Example: F = {1-Lipschitz functions on [0, 1] with f(0) = 0}. How

to calculate the covering number in sup-norm? N 1,
Fix e and construct family of piecewise-linear functions with constant
slope (-1, 0 or +1) in each [0,¢],[e,2¢],.... Since at each position ¢
{0,¢,2¢,...} we have three choices (up, down, flat) and we have % 0
”choice” points, then we have 3¢ such functions. AN
If | fllooc = Supgepo,1) |.f(x)| denotes the norm, then

log N(F, || - ||ocs €) < %10g3 and log N(F, L1(P,),¢) < % 4

Remark If F = {1-Lipschitz functions on [0, 1]?} then log N(F, || - ||oo,€) ~ (%)d and we still
get uniform law but exponentially in d(slower).

1 Concentration inequalities(revisited)

Goal: Often we want to understand concentration of more sophisticated things than averages,
€.8. SUPfecr % Z?:l(f(Xi) — Pf).

Definition 1.1. A sequence {X;} adapted to a filtration Fi C Fa C ... (increasing sequence of
o-fields) is a Martingale difference sequence if

o X; € F; foranyie N



o E[X;|Fi—1] =0 for any i € N.
Recall M, =3 | X; is associated martingale (X; = M; — M;_1).

Definition 1.2. Let X; be a MGD, it is 02-sub-Gaussian MGD if Elexp(\X;)|Fi—1] < exp (L;?>
for any i € N.

Example: If |X;| < ¢;, then {X;} is c¢?-sub-Gaussian MGD.
Theorem 1. (Azuma-Hoeffding) If {X;} is o?-sub-Gaussian MGD, then fort >0

2 2
PO, Xi>t) <exp (—@) and P30, Xi < —t) <exp (_QZ;ﬁ)
Proof Note that Y1 | X; is > I | o2-sub-Gaussian, as

n n—1 X )\20721 A n )
E [exp| A E X; | | e | exp 5 < exp 5 E o;
i=1 ,
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H AR [e’\X" |]~'n,1}
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2 Arbitrary function of independent random variables
Let {X;}? , be independent, X; € X. Let f: X — R. Can we control f(Xi.,) — E[f]?

2.1 Doob martingale

Idea: Turn f — E[f] into n summands with Martingale difference structure.
Let F; = o(X1,...,X;) is a o-field generated by Xi,...,X,. Define

D; = E[f(X1:n)|Fi] — E[f (X1:0) | Fi]-

Note that E[f(X1.n)|Fn] = f(X1:n) and E[f(X1.n)|Fo] = E[f]. Therefore,
Z D; = f(Xlzn) - E[f(Xln)]
i=1

Also E[D;| Fi] = E[[E[f|Fi] Fia] — E[f|Fia] = 0.
Observation D; is a MD sequence adapted to {F;}, where F; = o(X1,..., X;).

2.2 Bounded differences

Theorem 2. Let all f satisfy c; bounded differences(| f(X1.(i—1)» Ti» Xit1:m) —f(X1:(6i=1)5 a:;, Xit1n)| <
¢i). Then f— Pf is izz;l c2subgaussian..

Proof Apply Azuma-Hoeffding inequality to associated Doob martingale.

D; = E[f(Xlsn”]:i] - E[f(Xlzn)‘]:i—l]-



Let
Ui = sup, [/f()ﬁ (i-1)s Tis Xit1:n) AP (Xit1:m) —/f(X1:(i_1)7$i,Xi+1:n)dP(ﬂfi)dP(ﬂszn)}

Li=inf, [/f(Xlz(i1)7xzsz+1n)dP(Xi+1:n) - /f(Xlz(i1)awi7Xi+1:n)dP(xi)dP($i+1:n):|

Observe that

and

2
. C> .
so, D; is 02 = + sub gaussian.
O

Corollary 3. (McDiarmid’s inequality) If f : x™ — R satisfies ¢; bounded differences then for

t>0,
2t . .
P(f(X1n) —E(f) > t) <exp Y2 (similar for lower tail)
=16

Idea Processes/functions satisfying bounded differences reduce problem of controlling tails to
controlling expectations. Let F C y — R. Assume that

f(z) = f(z')| < B < ooVz,z’ € x.
Proposition 4. Both supscr LS f(Xi)—Pf and supr]:| Yoy f(Xs)—Pf| satisfy g bounded

differences.

Proof Fix any z1, x9, ...,mn,x; € [n]. Then

f(xj) + fz ) Pf

SUpfer %Zf(%) - Pf — SupfeF %
j= Jj= 173#2
IS - Pr| - S )+ () - P
J=1 " =L i
= Squef% {f(ﬂfﬂ — f(z;

<

< supfer

:'\bu <



Corollary 5. Let F C x — R, |f(z) — f(z')| < B < ooV, 2’ € x,then

n

1
n;ﬂxi) - Pf

P (Supfe]-' > E[||P. — Pl|7] + t)

Consequence To prove ULLN or even concentration/high probability version everything boils
down to controlling E[|| P, — P||z] < 2E[||P?¢||7] = 2R, ((F))(Rademacher complexity).

3 Subgaussian Processes

Definition 3.1. Let {X;}icr be a collection of real valued random variables. This is a Stochastic
Process indexed by T

Remark  All processes we deal with in this class will be separable, i.e. there exists a countable
set T" such that sup,cp | X¢| = sup;ep | X3

Definition 3.2. Let (T,d) be a metric space. We say { X} ier is a subgaussian process if

< A2d(s,t)?

log I [exp (A(Xs — X¢))] < 5

(1)
forall X >0,s,t€T.

Remark One might expect a subgaussian constant o2 to appear in (1), i.e. the upper bound

2 2 2
should be %, however, the metric is chosen so that the subgaussian constant is absorbed
into the metric d.

Example 1:

A gaussian process is an example of a subgaussian process. To see this, let T = R? and Z ~
N(0,0%1,), define X; = (Z,t). Note that X5 — X; = (Z,s —t) has a normal distribution with mean
zero and variance ||s — t[|302, therefore log E[e*Xs=X0)] < 1A\202||s — t||2 &

Example 2: (Rademacher Process with a loss function) Let T be a vector space equipped with
a norm || - ||, X; € X are random variables and ¢ : T x X — R is lipschitz in its first argument,
meaning that

|0(s,x) = L(t,x)| < ||t —s|| forall z € X,s,t €T

Then for {¢;}? ; ii.d. Rademacher random variables, because €;(¢(t, X;) — {(s, X;)) is bounded



between —||s — t|| and ||s — t||, it is subgaussian, hence

E [exp (z\iei(ﬂ(t,Xi) —K(S,XZ»))) <E |E |exp <Ai€z (t, X;) )” ]
i=1 )\2 nz:l
<E exp<8 (“, >—€<sX>>> X]
i=1
2 n
< exp @ZHtsH?)
i=1

<)\2an — tH2>
=oxp | —— g

Soif Z; = 1" | €£(t, z;) then the stochastic process {X¢}ier is %|| - ||*-subgaussian. &



