
Stats 300b: Theory of Statistics Winter 2018

Lecture 11 – Feb 13

Lecturer: John Duchi Scribe: Elena Tuzhilina, Suyash Gupta

� Warning: these notes may contain factual errors

Reading: VdV ch. 18-19, HDP ch. 8

Outline:

• Bounded differences and Azuma-Hoeffding inequality

• Rademacher and sub-Gaussian processes

• Entropy integrals and chaining

Recap Using symmetrization+covering/metric entropies to give ULLNs. Our goal is to prove
P(supf∈F |Pnf − Pf | ≥ t) → 0 as n → ∞. Denote P 0

n = 1
n

∑n
i=1 εif(xi), where εi are i.i.d Re-

demacher random variables. Then for any ε > 0

P(sup
f∈F
|Pnf − Pf | ≥ t) ≤

E[||Pn − P ||F ]

t
≤ 2E[||P 0

n ||F ]

t
.

√
logN(F , L1(Pn), t) + ε√

nt
.

If logN = o(n), then the RHS tends to 0.

Example: F = {1-Lipschitz functions on [0, 1] with f(0) = 0}. How
to calculate the covering number in sup-norm?
Fix ε and construct family of piecewise-linear functions with constant
slope (-1, 0 or +1) in each [0, ε], [ε, 2ε], . . . . Since at each position
{0, ε, 2ε, . . .} we have three choices (up, down, flat) and we have 1

ε

”choice” points, then we have 3
1
ε such functions.

If ||f ||∞ = supx∈[0,1] |f(x)| denotes the norm, then

logN(F , || · ||∞, ε) � 1
ε log 3 and logN(F , L1(Pn), ε) . 1

ε .

Remark If F = {1-Lipschitz functions on [0, 1]d} then logN(F , || · ||∞, ε) ∼
(
1
ε

)d
and we still

get uniform law but exponentially in d(slower).

1 Concentration inequalities(revisited)

Goal: Often we want to understand concentration of more sophisticated things than averages,
e.g. supf∈F

1
n

∑n
i=1(f(Xi)− Pf).

Definition 1.1. A sequence {Xi} adapted to a filtration F1 ⊂ F2 ⊂ . . . (increasing sequence of
σ-fields) is a Martingale difference sequence if

• Xi ∈ Fi for any i ∈ N
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• E[Xi|Fi−1] = 0 for any i ∈ N.

Recall Mn =
∑n

i=1Xi is associated martingale (Xi = Mi −Mi−1).

Definition 1.2. Let Xi be a MGD, it is σ2i -sub-Gaussian MGD if E[exp(λXi)|Fi−1] ≤ exp
(
λ2σ2

i
2

)
for any i ∈ N.

Example: If |Xi| ≤ ci, then {Xi} is c2i -sub-Gaussian MGD.

Theorem 1. (Azuma-Hoeffding) If {Xi} is σ2i -sub-Gaussian MGD, then for t ≥ 0

P(
∑n

i=1Xi ≥ t) ≤ exp
(
− t2

2
∑n
i=1 σ

2
i

)
and P(

∑n
i=1Xi ≤ −t) ≤ exp

(
− t2

2
∑n
i=1 σ

2
i

)
Proof Note that

∑n
i=1Xi is

∑n
i=1 σ

2
i -sub-Gaussian, as

E

[
exp

(
λ

n∑
i=1

Xi

)]
= E

[
n−1∏
i=1

eλXiE
[
eλXn |Fn−1

]]
≤ E

[
n−1∏
i=1

eλXi

]
exp

(
λ2σ2n

2

)
≤ exp

(
λ

2

n∑
i=1

σ2i

)

2 Arbitrary function of independent random variables

Let {Xi}ni=1 be independent, Xi ∈ X . Let f : X n → R. Can we control f(X1:n)− E[f ]?

2.1 Doob martingale

Idea: Turn f − E[f ] into n summands with Martingale difference structure.
Let Fi = σ(X1, . . . , Xi) is a σ-field generated by X1, . . . , Xn. Define

Di = E[f(X1:n)|Fi]− E[f(X1:n)|Fi−1].

Note that E[f(X1:n)|Fn] = f(X1:n) and E[f(X1:n)|F0] = E[f ]. Therefore,

n∑
i=1

Di = f(X1:n)− E[f(X1:n)].

Also E[Di|Fi−1] = E[|E[f |Fi]Fi−1]− E[f |Fi−1] = 0.

Observation Di is a MD sequence adapted to {Fi}, where Fi = σ(X1, . . . , Xi).

2.2 Bounded differences

Theorem 2. Let all f satisfy ci bounded differences(|f(X1:(i−1), xi, Xi+1:n)−f(X1:(i−1), x
′
i, Xi+1:n)| ≤

ci). Then f − Pf is 1
4

∑n
i=1 c

2
i subgaussian..

Proof Apply Azuma-Hoeffding inequality to associated Doob martingale.

Di = E[f(X1:n)|Fi]− E[f(X1:n)|Fi−1].
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Let

Ui = sup
x
′
i

[∫
f(X1:(i−1), x

′
i, Xi+1:n) dP (Xi+1:n)−

∫
f(X1:(i−1), xi, Xi+1:n) dP (xi) dP (xi+1:n)

]
Li = inf

x
′
i

[∫
f(X1:(i−1), x

′
i, Xi+1:n) dP (Xi+1:n)−

∫
f(X1:(i−1), xi, Xi+1:n) dP (xi) dP (xi+1:n)

]
Observe that

Li ≤ Di ≤ Ui

and

Ui − Li ≤ ci

so, Di is σ2i =
c2i
4 sub gaussian.

Corollary 3. (McDiarmid’s inequality) If f : χn 7→ R satisfies ci bounded differences then for
t ≥ 0,

P (f(X1:n)− E(f) ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.(similar for lower tail)

Idea Processes/functions satisfying bounded differences reduce problem of controlling tails to
controlling expectations. Let F ⊆ χ 7→ R. Assume that

|f(x)− f(x
′
)| ≤ B <∞∀x, x′ ∈ χ.

Proposition 4. Both supf∈F
1
n

∑n
i=1 f(Xi)−Pf and supf∈F | 1n

∑n
i=1 f(Xi)−Pf | satisfy B

n bounded
differences.

Proof Fix any x1, x2, ..., xn, x
′
i ∈ [n]. Then

supf∈F

 1

n

n∑
j=1

f(xj)− Pf

− supf∈F
 1

n

n∑
j=1,j 6=i

f(xj) + f(x
′
i)− Pf


≤ supf∈F

 1

n

n∑
j=1

f(xj)− Pf

−
 1

n

n∑
j=1,j 6=i

f(xj) + f(x
′
i)− Pf


= supf∈F

1

n

[
f(xi)− f(x

′
i)
]

≤ B

n
.
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Corollary 5. Let F ⊆ χ 7→ R, |f(x)− f(x
′
)| ≤ B <∞∀x, x′ ∈ χ,then

P

(
supf∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Pf

∣∣∣∣∣ ≥ E[||Pn − P ||F ] + t

)

≤ exp

(
−2nt2

B2

)
Consequence To prove ULLN or even concentration/high probability version everything boils
down to controlling E[||Pn − P ||F ] ≤ 2E[||P on ||F ] = 2Rn((F ))(Rademacher complexity).

3 Subgaussian Processes

Definition 3.1. Let {Xt}t∈T be a collection of real valued random variables. This is a Stochastic
Process indexed by T .

Remark All processes we deal with in this class will be separable, i.e. there exists a countable
set T ′ such that supt∈T |Xt| = supt∈T ′ |Xt|.

Definition 3.2. Let (T, d) be a metric space. We say {Xt}t∈T is a subgaussian process if

logE [exp (λ(Xs −Xt))] ≤
λ2d(s, t)2

2
(1)

for all λ > 0, s, t ∈ T .

Remark One might expect a subgaussian constant σ2 to appear in (1), i.e. the upper bound

should be λ2σ2d(s,t)2

2 , however, the metric is chosen so that the subgaussian constant is absorbed
into the metric d.

Example 1:
A gaussian process is an example of a subgaussian process. To see this, let T = Rd, and Z ∼
N (0, σ2Id), define Xt = 〈Z, t〉. Note that Xs−Xt = 〈Z, s− t〉 has a normal distribution with mean
zero and variance ||s− t||22σ2, therefore logE[eλ(Xs−Xt)] ≤ 1

2λ
2σ2||s− t||22 ♣

Example 2: (Rademacher Process with a loss function) Let T be a vector space equipped with
a norm || · ||, Xi ∈ X are random variables and ` : T × X → R is lipschitz in its first argument,
meaning that

|`(s, x)− `(t, x)| ≤ ||t− s|| for all x ∈ X , s, t ∈ T

Then for {εi}ni=1 i.i.d. Rademacher random variables, because εi(`(t,Xi) − `(s,Xi)) is bounded
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between −||s− t|| and ||s− t||, it is subgaussian, hence

E

[
exp

(
λ

n∑
i=1

εi(`(t,Xi)− `(s,Xi))

)]
≤ E

[
E

[
exp

(
λ

n∑
i=1

εi(`(t,Xi)− `(s,Xi))

)]∣∣∣∣∣X
]

≤ E

[
exp

(
λ2

8

n∑
i=1

(`(t,Xi)− `(s,Xi))
2

)∣∣∣∣∣X
]

≤ exp

(
λ2

8

n∑
i=1

||t− s||2
)

= exp

(
λ2n||s− t||2

8

)
So if Zt =

∑n
i=1 εi`(t, xi) then the stochastic process {Xt}t∈T is n

4 || · ||
2-subgaussian. ♣
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