## Lecture 10 - Feb 8

Lecturer: John Duchi Scribe: Michael Feldman, Swarnadip Ghosh

## (2)Warning: these notes may contain factual errors

Reading: VdV ch. 19, Vershynin ch. 1,2,8

## Outline:

- Sub-Gaussian random variables
- Symmetrization
- Rademacher complexity and metric entropy

Recap: For a metric space $(\Theta, \rho)$, the covering number is $N(\Theta, \rho, \epsilon)=\min \left\{N\right.$ s.t. $\exists$ an $\epsilon$-cover $\left\{\theta_{i}\right\}_{i=1}^{N}$ of $\left.\Theta\right\}$ where $\left\{\theta_{i}\right\}_{i=1}^{N}$ is an $\epsilon$-cover if $\forall \theta \in \Theta, \exists \theta_{i}$ s.t. $\rho\left(\theta, \theta_{i}\right) \leq \epsilon$. Our goal is to prove uniform laws of large numbers, i.e.,

$$
\left\|P_{n}-P\right\|_{\mathcal{F}}=\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \xrightarrow{p} 0
$$

## 1 Concentration Inequalities

Concentration inequalities are the key to proving ULLNS and are of fundamental importance in high dimensional and modern theoretical statistics and machine learning.

### 1.1 Sub-Gaussianity

Definition 1.1. $X$ is a mean-zero $\sigma^{2}$-sub-Gaussian $R V$ if

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right) \quad \forall \lambda \in \mathbb{R}
$$

Example: Gaussian random variables: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
\mathbb{E}\left[e^{\lambda(X-\mu)}\right]=\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right) \quad \forall \lambda \in \mathbb{R}
$$

Example: Bounded random variables: If $X \in[a, b]$, then $X$ is $\frac{(b-a)^{2}}{4}$ - subgaussian i.e,

$$
\mathbb{E}\left[e^{\lambda(X-\mathbb{E} X)}\right] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right) \quad \forall \lambda \in \mathbb{R}
$$

Proposition 1. Let $X_{i}$ 's be independent $\sigma_{i}^{2}$ - sub-Gaussian random variables. Then $\sum_{i=1}^{n} X_{i}$ is a $\sum \sigma_{i}^{2}$-sub-Gaussian random variable.

Proof W.l.o.g., let $\mathbb{E} X_{i}=0$. By independence,

$$
\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right] \leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

We now derive two basic concentration inequalities for sub-Gaussian random variables.

### 1.2 Concentration inequalities

Proposition 2. (Chernoff bound for sub-Gaussians) Let $X$ be $\sigma^{2}$ - sub-Gaussian. For all $t \geq 0$,

$$
\max (\mathbb{P}(X-\mathbb{E} X \geq t), \mathbb{P}(X-\mathbb{E} X \leq-t)) \leq e^{-t^{2} / 2 \sigma^{2}}
$$

Proof Let $\mathbb{E} X=0$ w.l.o.g. The result is proved using a standard technique, exponentiating the random variable and applying Markov' inequality:

$$
\begin{aligned}
\mathbb{P}(X \geq t) & =\mathbb{P}\left(e^{\lambda X} \geq e^{\lambda t}\right) \quad \forall \lambda \in \mathbb{R}-+ \\
& \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda t}} \\
& \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t} .
\end{aligned}
$$

The lefthand side of the above equation is minimized at $\lambda=\frac{t}{\sigma^{2}}$, giving

$$
\mathbb{P}(X \geq t) \leq e^{t^{2} / 2 \sigma^{2}}
$$

Corollary 3. (Hoeffding bound) Let $X_{i}$ be independent $\sigma_{i}^{2}$-sub-Gaussian r.v.s. Then, for $t \geq 0$,

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(\frac{-n t^{2}}{2 \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}}\right)
$$

This is proved by applying the Chernoff bound to the $\sum_{i=1}^{n} X_{i}$, which is a $\sum_{i=1}^{n} \sigma_{i}^{2}$-sub-Gaussian. The bound for the lower tail is identical.

Proposition 4. (HW 1) Let $\left\{X_{i}\right\}_{i=1}^{n}$ be zero mean sub-Gaussians, possibly dependent. Then,

$$
\mathbb{E}\left(\max _{1 \leq i \leq n} X_{i}\right) \leq \sqrt{2 \sigma^{2} \log n}
$$

## 2 Symmetrization

For any class $\mathcal{F} \subset\{\mathcal{X} \rightarrow \mathbb{R}\}$,

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}} P_{n} f-P f \geq t\right) \leq t^{-1} \mathbb{E}\left[\sup _{f \in \mathcal{F}} P_{n} f-P f\right]
$$

If $P_{n}-P$ is symmetric, these expressions are much easier to deal with.
Definition 2.1. $\varepsilon$ is a Rademacher random variable if $\varepsilon \in\{-1,1\}$ and $\mathbb{E}(\varepsilon)=0$.
Theorem 5. (Symmetrization) Let $X_{1}, \ldots, X_{n}$ be independent random vectors in a Banach space equipped with a norm $\|\cdot\|$ and let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be i.i.d. Rademacher variables which are independent of the $X_{i}$ 's. For $p \geq 1$,

$$
\mathbb{E}\left[\left\|\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right)\right\|^{p}\right] \leq 2^{p} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \varepsilon_{i} X_{i}\right\|^{p}\right]
$$

Proof Let $X_{i}^{\prime}$ be an independent copy of $X_{i}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right)\right\|^{p}\right] & =\mathbb{E}\left[\left\|\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}^{\prime}\right)\right\|^{p}\right] \\
& \leq \mathbb{E}\left[\left\|\sum_{i=1}^{n}\left(X_{i}-X_{i}^{\prime}\right)\right\|^{p}\right]
\end{aligned}
$$

by Jensen's inequality $\left(\|\cdot\|^{p}\right.$ is convex as $p \geq 1$ ). Notice that $X_{i}-X_{i}^{\prime}$ is symmetric about 0 , so $X_{i}-X_{i}^{\prime} \stackrel{d}{=} \varepsilon_{i}\left(X_{i}-X_{i}^{\prime}\right)$. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right)\right\|^{p}\right] & \leq \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i}\left(X_{i}-X_{i}^{\prime}\right)\right\|^{p}\right] \\
& =2^{p} \mathbb{E}\left[\left\|\frac{1}{2} \sum_{i=1}^{n} \epsilon_{i} X_{i}-\frac{1}{2} \sum_{i=1}^{n} \epsilon_{i} X_{i}^{\prime}\right\|^{p}\right] \\
& \leq 2^{p-1} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|^{p}\right]+2^{p-1} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}^{\prime}\right\|^{p}\right] \\
& =2^{p} \cdot \mathbb{E}\left[\left\|\sum_{i=1}^{n} \varepsilon_{i} X_{i}\right\|^{p}\right]
\end{aligned}
$$

The second inequality follows from the convexity of $\|\cdot\|^{p}$.
This result is useful for several reasons:

1. symmetric r.v.s are often easier to work with
2. we can find more precise bounds for symmetric sums
3. proofs of ULLNS will be easier
4. Conditional on $\left\{X_{i}\right\}_{i=1}^{n}, \sum_{i=1}^{n} \varepsilon_{i} X_{i}$ is $\sum_{i=1}^{n} X_{i}^{2}$-sub-Gaussian.

By symmetrization,

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}} P_{n} f-P f \geq \varepsilon\right) \leq \frac{1}{\varepsilon} \mathbb{E}\left[\sup _{f \in \mathcal{F}} P_{n} f-P f\right] \leq \frac{2}{n \varepsilon} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)\right|\right]
$$

Definition 2.2. The Rademacher complexity $R_{n}(\mathcal{F})$ is defined as

$$
R_{n}(\mathcal{F})=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)\right|\right]
$$

If $R_{n}(\mathcal{F})=o(n)$, then we have a ULLN. Typically we require an envelope function $F$, a function that satisifies $F(x) \geq|f(x)|$, for all $x \in \mathcal{X}$ and $f \in \mathcal{F}$. For $M \in \mathbb{R}_{+}$, let

$$
f_{M}(x)= \begin{cases}f(x) & |f(x)| \leq M \\ 0 & |f(x)|>M\end{cases}
$$

and $\mathcal{F}_{M}=\left\{f_{m}: f \in \mathcal{F}\right\}$.
Theorem 6. Let $\mathcal{F}$ be a class of functions with envelope $F \in L_{1}(P)$. If $\log N\left(\mathcal{F}_{M}, L_{1}\left(P_{n}\right), \varepsilon\right)=$ $o_{p}(n)$ for all $M<\infty$ and $\varepsilon>0$, then $\left\|P_{n}-P\right\|_{\mathcal{F}} \xrightarrow{p} 0$.
Proof Let $P_{n}^{0} f=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(X_{i}\right)$ where the $\epsilon_{i}$ are i.i.d. Rademachers. By symmetrization,

$$
\begin{aligned}
\mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}\right] & \leq 2 \mathbb{E}\left[\left\|P_{n}^{0}\right\|_{\mathcal{F}}\right] \\
& \leq 2 \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}\left(f\left(X_{i}\right)-f_{M}\left(X_{i}\right)\right)\right|\right]+2 \mathbb{E}\left[\sup _{f \in \mathcal{F}_{M}}\left|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right|\right]
\end{aligned}
$$

Call the first term above $T_{1}$ and the second $T_{2} . T_{1} \leq 2 \mathbb{E}\left[F(X) \mathbf{1}_{F(X) \geq M}\right] \rightarrow 0$ as $M \rightarrow \infty$. Let $\mathcal{G}$ be minimal $\varepsilon$-cover of $\mathcal{F}_{M}$ in $L_{1}\left(P_{n}\right)$ norm. Then,

$$
\sup _{f \in \mathcal{F}_{M}}\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right\| \leq \max _{g \in \mathcal{G}}\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g\left(X_{i}\right)\right\|+\epsilon
$$

Conditional on $X_{i}, \sum_{i=1}^{n} \varepsilon_{i} g\left(X_{i}\right)$ is $n \sigma_{n}^{2}:=\sum_{i=1}^{n} g^{2}\left(X_{i}\right)$ sub-Gaussian. Since $\sum_{i=1}^{n} g^{2}\left(X_{i}\right) \leq n M^{2}$, $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} g\left(X_{i}\right)$ is $M^{2}$ sub-Gaussian.

$$
\begin{aligned}
\mathbb{E}\left[\sup _{g \in \mathcal{G}}\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} g\left(X_{i}\right)\right\| \| X\right] & \leq \sqrt{2 \sigma_{n}^{2} \log (2|\mathcal{G}|)} \\
& \leq \sqrt{2 M^{2} \log \left(2 N\left(\mathcal{F}_{M}, L_{1}\left(P_{n}\right), \epsilon\right)\right)} \\
& =o_{p}(\sqrt{n})
\end{aligned}
$$

Therefore we get, $\mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}\right] \leq 2 \mathbb{E}\left[F \mathbf{1}_{F \geq M}\right]+2 \mathbb{E}\left[M \wedge o_{p}(1)\right]+2 \epsilon$. Now, let $M \rightarrow \infty, n \rightarrow \infty$, and $\varepsilon \downarrow 0$. The righthand side goes converges to 0 , concluding the proof.

