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� Warning: these notes may contain factual errors
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1 Uniform laws of large numbers

Definition 1.1. Let F be a collection of functions f : X → R. Then F satisfies a uniform law of
large numbers (ULLN) if

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

p→ 0,

where Pf =
∫
fdP and Pn = n−1

∑n
i=1 δXi is the empirical distribution of the sample {X1, . . . , Xn}.

Example 1 (Glivenko-Cantelli theorem): Let F = {f(x) = 1 {x ≤ t} , t ∈ R} so that Pnf =
P (X ≤ t) for some t ∈ R. Then

sup
f∈F
|Pnf − pf | = sup

t∈R
|Pn(X ≤ t)− P (X ≤ t)| p→ 0.

In fact, more is possible: the Dvoretzky-Kiefer-Wolfowitz inequality states that, for any ε > 0,

P
(

sup
t∈R
|Pn(X ≤ t)− P (X ≤ t)| ≥ ε

)
≤ 2 exp{−2nε2}.

♣

Why do we want ULLNs? They make consistency results much easier. We’ll give a few
“generic” consistency results.

Let Θ be some parameter space, `θ : X → R some loss function, for example

`θ = − log pθ(x)

for some model pθ.
Then define the risk R(θ) = E`θ(X) = P`θ and the observed risk Rn(θ) = Pn`θ.

Observation 1 (Simple consistency results). If F = {`θ}θ∈Θ satisfies a ULLN and {θ̂n}n is any
sequence of estimators such that

Rn(θ̂n) ≤ inf
θ∈Θ

R(θ) + oP(1),

then R(θ̂n)
p→ infθ R(θ).
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Proof Assume w.l.o.g. that θ∗ ∈ argminθ R(θ). Then

R(θ̂n)−R(θ∗) =
(
R(θ̂n)−Rn(θ̂n)

)
+
(
Rn(θ̂n)−Rn(θ∗)

)
+
(
Rn(θ∗)−R(θ∗)

)
= sup

θ∈Θ
|Rn(θ)−R(θ)|︸ ︷︷ ︸
oP(1) by ULLN

+Rn(θ̂n)−Rn(θ∗)︸ ︷︷ ︸
oP(1) by assumption

+ Rn(θ∗)−R(θ∗)︸ ︷︷ ︸
oP(1) by regular LLN

p→ 0.

Corollary 2 (Argmax/argmin theorem). Assume that R is such that, for all ε > 0 there exists a
δ > 0 such that

R(θ) ≥ R(θ∗) + δ whenever d(θ, θ∗) ≥ ε.

Under the conditions of observation 1,

θ̂n
p→ θ∗.

Proof If d(θ̂n, θ
∗) ≥ ε, then R(θ̂n)−R(θ∗) ≥ δ. But, by observation 1, θ̂n

p→ θ∗. Hence,

P
(
d(θ̂n, θ

∗) ≥ ε
)
≤ P

(
Rn(θ̂n) ≥ R(θ∗) + δ

)
→ 0.

How do we prove ULLNs? Covering and understanding the “massiveness” of sets of functions.

Definition 1.2. Let (Θ, ρ) be a (pseudo-)metric space.

ρ : Θ×Θ→ R≥0.

For ε > 0, we say that {θi}Ni=1 is an ε-cover of Θ if, for all θ ∈ Θ, there exists an i such that

d(θ, θi) ≤ ε.

Definition 1.3. The ε-covering number of Θ is the smallest size of ε-covers. ie,

N(Θ, ρ, ε) = inf{N ∈ Z≥0 : there exists an ε-cover {θi}Ni=1 of Θ}.

The metric entropy is then logN(Θ, ρ, ε).

Definition 1.4. For δ > 0, a set {θi}Ni=1 ⊆ Θ is a δ-packing of Θ if, for all i 6= j

ρ(θi, θj) > δ.

The packing number is then

M(Θ, ρ, δ) = sup{M ∈ Z≥0 : there exists a δ-cover {θi}Mi=1 of Θ}.
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Observation 3. For all ε > 0,
M(2ε) ≤ N(ε) ≤M(ε).

Example 2 (Covering numbers of norm balls by volume arguments): Let Θ = {θ ∈ Rd : ‖θ‖ ≤ r}
for some norm ‖ · ‖ on Rd and r > 0.

Using ρ(x, y) = ‖x− y‖, we have that(
r

ε

)d
≤ N(Θ, ρ, ε) ≤

(
1 +

2r

ε

)d
.

Proof Observe that, for B = {θ ∈ Rd : ‖θ‖ ≤ 1}, we have that

Vol(Θ)

Vol(εB)
=

Vol(rB)

Vol(εB)
=
rd

εd
.

Hence, any covering of Θ must have at least (r/ε)d ε-balls, and so

N(Θ, ρ, ε) ≥
(
r

ε

)d
.

To see the reverse inequality, let {θi}Mi=1 be a maximal ε-packing of Θ = rB. Then the θi+Bε/2
are disjoint, and so

M⊎
i=1

(
θi +

ε

2
B

)
⊆
(
r +

ε

2

)
B.

Therefore, we have that

M(ε/2)d Vol(B) =
n∑
i=1

Vol(θi + Bε/2)

= Vol

( M⊎
i=1

(θi + Bε/2)

)
≤ Vol

(
(r + ε/2)B

)
= (r + ε/2)d Vol(B).

Hence, we can conclude that

M ≤ (2/ε)d(r + ε/2)d

= (1 + 2r/ε)d.

♣

2 Bracketing number

When dealing with functional spaces F = {f : X → R}, a similar notion to covering numbers is
the bracketing number, namely:
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Definition 2.1. Let F ⊆
{
f : X → R

}
be a collection of functions, and µ a measure on X . A set

{[li, ui]}Ni=1 ⊂ RX is a ε - bracket of F in Lp(µ) if

∀f ∈ F ∃i s.t li ≤ f(x) ≤ µi and ‖ui − li‖Lp(µ) ≤ ε

From ε brackets, we similarly get bracketing numbers by taking the infimum over N :

Definition 2.2. The bracketing number of F is

N[]

(
F , Lp(µ), ε

)
:= inf

{
N ∈ N : ∃ an ε-bracket {[li, ui]}Ni=1 of F in Lp(µ)

}
Example 3 (Lipschitz loss functions): Let Θ ⊂ Rd be compact, which implies that, for all ε > 0,
we have N(Θ, ‖·‖ , ε) <∞.

Let F = {lθ : θ ∈ Θ} where lθ are L(X)-Lipschitz in θ, namely, for all x and θ1, θ2:

|lθ1(x)− lθ2(x)| ≤ L(x) ‖θ1 − θ2‖

Then, assuming that E [L(X)] <∞:

N[] (F , L1, εE [L(X)]) ≤ N(Θ, ‖·‖ , ε/2)

♣

Proof Let
{
θi
}N
i=1

be an ε/2 -covering of Θ, then let’s define :

ui(x) : = lθi(x) +
ε

2
L(x)

li(x) : = lθi(x)− ε

2
L(x)

We know that for any θ ∈ Θ, ∃θi s,t ‖θ − θi‖ ≤ ε
2 , and from Lipschitz properties of lθ, we have:

|lθ(x)− lθi(x)| ≤ L(x) ‖θ − θi‖

≤ ε

2
L(x).

Thus, for all x ∈ X :

li(x) ≤ lθ(x) ≤ ui(x)

As, for all 1 ≤ i ≤ N , E [ui(X)− li(X)] = εE [L(X)], this ends the proof.
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3 Examples and theorems of uniform laws of large numbers

Theorem 4 (First ULLN). Let F ⊂ RX satisfy:

N[] (F , Lp, ε) <∞ for all ε > 0

Then , under i.i.d. sampling

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

p→ 0

Proof For any given ε > 0, let {[li, ui]}Ni=1 be an ε-bracket for F .
For any f ∈ F , there exists i ∈ [N ] s.t li ≤ f ≤ ui, and therefore we have:

Pnf − Pf ≤ Pnui − Pli
= Pnui − Pui + Pui − Pli
≤ (Pn − P )ui + ε.

Similarly:

Pf − Pnf ≤ Pui − Pnli
≤ (P − P )li + ε.

This leads to:

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

≤ max
1≤i≤N

|(Pn − P )(ui + li)|+ ε

= op(1) + ε

as there are finitely many terms in the maximum.

Example 4 (Logistic Regression): Suppose that we are given pairs Z = (X,Y ) ∈ Rd × {±1}.

• Goal: Classification, find θ such that:

sign(θTx) = y

• Consider the following loss function:

lθ(x, y) = log
(
1 + exp(−yxT θ)

)
Then, considering that φ : t 7→ log(1 + exp(−t)) is 1-Lipschitz (its derivative being bounded
by 1), we get that:

|lθ1(x, y)− lθ1(x, y)| ≤
∣∣xT (θ1 − θ2)

∣∣ ≤ ‖x‖ ‖θ1 − θ2‖

by Cauchy-Schwarz’s inequality.

Applying the result seen in the example 3 with L(x) = ‖x‖, we see that, if Θ ⊂ Rd is compact
and X has a finite first moment, then:

‖Pn − P‖F = sup
θ∈Θ
|Pnlθ − Plθ|

p→ 0

♣
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Figure 1: Loss function in logistic regression (in terms of yxT θ)
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