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1 Uniform laws of large numbers

Definition 1.1. Let F be a collection of functions f: X — R. Then F satisfies a uniform law of
large numbers (ULLN) if

|P, — Pz = sup|Puf — Pf| &0,
feFr
where Pf = [ fdP and P, =n~1 3" | §x, is the empirical distribution of the sample {X1,..., X, }.

Example 1 (Glivenko-Cantelli theorem): Let F = {f(x) = 1{x <t},t € R} so that P,f =
P(X <t) for some t € R. Then

Sup|Pnf *pf| = Sup|Pn(X < t) *P(X < t)| £> 0.
feF teR

In fact, more is possible: the Dvoretzky-Kiefer-Wolfowitz inequality states that, for any € > 0,

P(sup|Py(X < t) — P(X < t)| > €) < 2exp{—2ne*}.
teR

&

Why do we want ULLNs? They make consistency results much easier. We'll give a few
“generic” consistency results.
Let © be some parameter space, £yg: X — R some loss function, for example

ly = —log py(x)

for some model py.
Then define the risk R(0) = Ely(X) = Ply and the observed risk R, () = P,{y.

Observation 1 (Simple consistency results). If F = {ls}oco satisfies a ULLN and {0}, is any
sequence of estimators such that

R, (6,) < inf R(6) + op(1),
0O

then R(0,) % infs R(0).



Proof Assume w.lo.g. that §* € argming R(#). Then

A~

R(6,) — R(6%) = (R(6n) — Rn(6)) + (Ru(0) — Rn(67)) + (Ra(67) — R(6"))
= sup| Ru(0) = R(O)| + Fu(0n) — Fu(07) + Rult7) — RO")

op(1) by assumption  op(1) by regular LLN

op(1) by ULLN

2.

Corollary 2 (Argmax/argmin theorem). Assume that R is such that, for all € > 0 there ezists a
& > 0 such that
R(0) > R(6") + 0 whenever d(0,0%) > e.

Under the conditions of observation 1,
0, 5 0.
Proof If d(6,,6%) > ¢, then R(6,) — R(6*) > 6. But, by observation 1, 8,, 2> 6*. Hence,

P(d(0n,0%) > €) < P(R,(0,) > R(0%) +6) — 0.

How do we prove ULLNs? Covering and understanding the “massiveness” of sets of functions.

Definition 1.2. Let (0, p) be a (pseudo-)metric space.
p: O x O — Rxp.
For e > 0, we say that {6 fil s an e-cover of © if, for all 8 € O, there exists an i such that
d(9,0") < e.
Definition 1.3. The e-covering number of © is the smallest size of e-covers. ie,
N(©,p,€) =inf{N € Zsq : there exists an e-cover {0}, of O}.
The metric entropy is then log N(O, p, €).
Definition 1.4. For § > 0, a set {#°}}Y., C © is a 6-packing of © if, for alli # j
p(6%,67) > 6.
The packing number is then

M(0©,p,8) = sup{M € Zsg : there exists a 5-cover {0°}M, of O}.



Observation 3. For all e > 0,
M(2¢) < N(e) < M(e).

Example 2 (Covering numbers of norm balls by volume arguments): Let © = {§ € R?: ||§]| < r}
for some norm || - || on R? and r > 0.
Using p(z,y) = ||z — y||, we have that

(£) <venos (14%)

Proof Observe that, for B = {# € R?: ||0|| < 1}, we have that

Vol(©)  Vol(rB) 74

Vol(eB)  Vol(eB)  ed’

Hence, any covering of © must have at least (r/¢)? e-balls, and so

N(©, p,¢) > <T>d.

€

To see the reverse inequality, let {#°}, be a maximal e-packing of © = rB. Then the 6+ Be/2

are disjoint, and so
M € €
‘+-B| C — |B.
g(a +2B> - <r+2>B

Therefore, we have that

M (e/2)2 Vol(B) = Zn: Vol(6" + Be/2)
i=1
M

= Vol ( e + Be/2)>

i=1
< Vol ((r +¢/2)B)
= (r+¢/2)* Vol(B).

Hence, we can conclude that

M < 2/ (r + ¢/2)°
(1+2r/e)?.

2 Bracketing number

When dealing with functional spaces F = {f : X — R}, a similar notion to covering numbers is
the bracketing number, namely:



Definition 2.1. Let F C {f X = R} be a collection of functions, and p a measure on X. A set
([l wi}X, € RY s a e - bracket of F in Ly(u) if

VfeF istl < f(x)<piand [lui— Ll ) <€

From € brackets, we similarly get bracketing numbers by taking the infimum over N

Definition 2.2. The bracketing number of F is

Ny(F, Ly(p),€) = inf{N €N : 3 an e-bracket {[l,w]}¥, of F in Lp(u)}

Example 3 (Lipschitz loss functions): Let © C RY be compact, which implies that, for all € > 0,
we have N(O, -], €) < oo.

Let F = {lg: 6 € O} where lyp are L(X)-Lipschitz in 6, namely, for all z and 6, 02:

o, (x) — lg, ()| < L(x) [|01 — 2]
Then, assuming that E [L(X)] < oo:

Ny (F, L1, E[L(X)]) < N(©, |l ¢/2)
&

Proof Let {91-}2.]\;1 be an €/2 -covering of ©, then let’s define :

wilw) : = lo,(2) + 5 L(z)
li() : = lo, () = 5 L(x)

We know that for any 0 € ©, 30; s,t |6 — 0;|| < 5, and from Lipschitz properties of lg, we have
llo(z) —lo,(x)| < L(x) [|6 — 04|

€
2
Thus, for all z € X:

As, forall 1 <i < N, Eu;(X) — ;(X)] = €E[L(X)], this ends the proof.



3 Examples and theorems of uniform laws of large numbers

Theorem 4 (First ULLN). Let F C RY satisfy:
Ny (F, Ly, €) < oo for all e >0
Then , under i.i.d. sampling
|Py = Pllz = sup | Pof — Pf| 50
fer
Proof For any given € > 0, let {[l;, ul}}f\il be an e-bracket for F.
For any f € F, there exists i € [N] s.t [; < f < w;, and therefore we have:
P,f — Pf < Pyu; — Pl;
= Pyu; — Pu; + Pu; — Pl;
< (P, — P)u; +e.
Similarly:
Pf—P,f < Pu; — P,l;
<(P—-P)l; +e
This leads to:
[P — P|| 7 = sup |P,f — Pf]
feF

< max [(P, — P)(u; + 1;)| + €
1<i<N

=op(1) + €

as there are finitely many terms in the maximum. O

Example 4 (Logistic Regression): Suppose that we are given pairs Z = (X,Y) € R% x {£1}.
e Goal: Classification, find 6 such that:
sign(67z) =y
e Consider the following loss function:
lo(z,y) = log (1 + exp(—ya"0))

Then, considering that ¢ : ¢ — log(1 + exp(—t)) is 1-Lipschitz (its derivative being bounded
by 1), we get that:

oy (,y) — Lo, (2, y)| < |27 (61 — b2)] < [l |61 — 62|
by Cauchy-Schwarz’s inequality.

Applying the result seen in the example 3 with L(x) = ||z||, we see that, if © C R? is compact
and X has a finite first moment, then:

| P, — P||z = sup|Pulg — Plg| % 0
0cO
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Figure 1:

Loss function in logistic regression (in terms of yz”6)



