Stats 300b: Theory of Statistics

Winter 2018

Lecture 9 – February 6

Lecturer: John Duchi

Scribes: Maxime Cauchois and Damian Pavlyshyn

Warning: these notes may contain factual errors

Reading: van der Vaart 5.2, 19.1, 19.2

1 Uniform laws of large numbers

Definition 1.1. Let \mathcal{F} be a collection of functions $f: \mathcal{X} \to \mathbb{R}$. Then \mathcal{F} satisfies a uniform law of large numbers (ULLN) if

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |P_n f - Pf| \xrightarrow{p} 0,$$

where $Pf = \int f dP$ and $P_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$ is the empirical distribution of the sample $\{X_1, \ldots, X_n\}$.

Example 1 (Glivenko-Cantelli theorem): Let $\mathcal{F} = \{f(x) = \mathbf{1} \{x \leq t\}, t \in \mathbb{R}\}$ so that $P_n f = P(X \leq t)$ for some $t \in \mathbb{R}$. Then

$$\sup_{f \in \mathcal{F}} |P_n f - pf| = \sup_{t \in \mathbb{R}} |P_n (X \le t) - P(X \le t)| \xrightarrow{p} 0.$$

In fact, more is possible: the Dvoretzky-Kiefer-Wolfowitz inequality states that, for any $\epsilon > 0$,

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}}|P_n(X\leq t)-P(X\leq t)|\geq\epsilon\right)\leq 2\exp\{-2n\epsilon^2\}.$$

÷

Why do we want ULLNs? They make consistency results *much* easier. We'll give a few "generic" consistency results.

Let Θ be some parameter space, $\ell_{\theta} \colon \mathcal{X} \to \mathbb{R}$ some loss function, for example

$$\ell_{\theta} = -\log p_{\theta}(x)$$

for some model p_{θ} .

Then define the risk $R(\theta) = \mathbb{E}\ell_{\theta}(X) = P\ell_{\theta}$ and the observed risk $R_n(\theta) = P_n\ell_{\theta}$.

Observation 1 (Simple consistency results). If $\mathcal{F} = \{\ell_{\theta}\}_{\theta \in \Theta}$ satisfies a ULLN and $\{\hat{\theta}_n\}_n$ is any sequence of estimators such that

$$R_n(\hat{\theta}_n) \le \inf_{\theta \in \Theta} R(\theta) + o_{\mathbb{P}}(1),$$

then $R(\hat{\theta}_n) \xrightarrow{p} \inf_{\theta} R(\theta)$.

Proof Assume w.l.o.g. that $\theta^* \in \operatorname{argmin}_{\theta} R(\theta)$. Then

$$R(\hat{\theta}_n) - R(\theta^*) = \left(R(\hat{\theta}_n) - R_n(\hat{\theta}_n)\right) + \left(R_n(\hat{\theta}_n) - R_n(\theta^*)\right) + \left(R_n(\theta^*) - R(\theta^*)\right)$$
$$= \underbrace{\sup_{\theta \in \Theta} |R_n(\theta) - R(\theta)|}_{o_{\mathbb{P}}(1) \text{ by ULLN}} + \underbrace{R_n(\hat{\theta}_n) - R_n(\theta^*)}_{o_{\mathbb{P}}(1) \text{ by assumption}} + \underbrace{R_n(\theta^*) - R(\theta^*)}_{o_{\mathbb{P}}(1) \text{ by regular LLN}}$$
$$\xrightarrow{p} 0.$$

Corollary 2 (Argmax/argmin theorem). Assume that R is such that, for all $\epsilon > 0$ there exists a $\delta > 0$ such that

$$R(\theta) \ge R(\theta^*) + \delta$$
 whenever $d(\theta, \theta^*) \ge \epsilon$.

Under the conditions of observation 1,

 $\hat{\theta}_n \xrightarrow{p} \theta^*.$

Proof If $d(\hat{\theta}_n, \theta^*) \ge \epsilon$, then $R(\hat{\theta}_n) - R(\theta^*) \ge \delta$. But, by observation 1, $\hat{\theta}_n \xrightarrow{p} \theta^*$. Hence,

$$\mathbb{P}\big(d(\hat{\theta}_n, \theta^*) \ge \epsilon\big) \le \mathbb{P}\big(R_n(\hat{\theta}_n) \ge R(\theta^*) + \delta\big) \to 0$$

How do we prove ULLNs?	Covering and understanding the "massiveness" of sets of functions.
Definition 1.2. Let (Θ, ρ) be	a (pseudo-)metric space.

$$\rho\colon \Theta \times \Theta \to \mathbb{R}_{>0}.$$

For $\epsilon > 0$, we say that $\{\theta^i\}_{i=1}^N$ is an ϵ -cover of Θ if, for all $\theta \in \Theta$, there exists an i such that

$$d(\theta, \theta^i) \le \epsilon.$$

Definition 1.3. The ϵ -covering number of Θ is the smallest size of ϵ -covers. ie,

$$N(\Theta, \rho, \epsilon) = \inf\{N \in \mathbb{Z}_{\geq 0} : there \ exists \ an \ \epsilon \text{-}cover} \ \{\theta^i\}_{i=1}^N \ of \ \Theta\}.$$

The metric entropy is then $\log N(\Theta, \rho, \epsilon)$.

Definition 1.4. For $\delta > 0$, a set $\{\theta^i\}_{i=1}^N \subseteq \Theta$ is a δ -packing of Θ if, for all $i \neq j$

$$\rho(\theta^i, \theta^j) > \delta$$

The packing number is then

$$M(\Theta, \rho, \delta) = \sup\{M \in \mathbb{Z}_{\geq 0} : there \ exists \ a \ \delta \text{-cover} \ \{\theta^i\}_{i=1}^M \ of \ \Theta\}.$$

Observation 3. For all $\epsilon > 0$,

$$M(2\epsilon) \le N(\epsilon) \le M(\epsilon).$$

Example 2 (Covering numbers of norm balls by volume arguments): Let $\Theta = \{\theta \in \mathbb{R}^d : \|\theta\| \le r\}$ for some norm $\|\cdot\|$ on \mathbb{R}^d and r > 0.

Using $\rho(x, y) = ||x - y||$, we have that

$$\left(\frac{r}{\epsilon}\right)^d \le N(\Theta, \rho, \epsilon) \le \left(1 + \frac{2r}{\epsilon}\right)^d$$

Proof Observe that, for $\mathbf{B} = \{\theta \in \mathbb{R}^d : \|\theta\| \le 1\}$, we have that

$$\frac{\operatorname{Vol}(\Theta)}{\operatorname{Vol}(\epsilon \mathbf{B})} = \frac{\operatorname{Vol}(r\mathbf{B})}{\operatorname{Vol}(\epsilon \mathbf{B})} = \frac{r^d}{\epsilon^d}.$$

Hence, any covering of Θ must have at least $(r/\epsilon)^d \epsilon$ -balls, and so

$$N(\Theta, \rho, \epsilon) \ge \left(\frac{r}{\epsilon}\right)^d.$$

To see the reverse inequality, let $\{\theta^i\}_{i=1}^M$ be a maximal ϵ -packing of $\Theta = r\mathbf{B}$. Then the $\theta^i + \mathbf{B}\epsilon/2$ are disjoint, and so

$$\biguplus_{i=1}^{M} \left(\theta^{i} + \frac{\epsilon}{2} \mathbf{B} \right) \subseteq \left(r + \frac{\epsilon}{2} \right) \mathbf{B}.$$

Therefore, we have that

$$M(\epsilon/2)^{d} \operatorname{Vol}(\mathbf{B}) = \sum_{i=1}^{n} \operatorname{Vol}(\theta^{i} + \mathbf{B}\epsilon/2)$$
$$= \operatorname{Vol}\left(\biguplus_{i=1}^{M} (\theta^{i} + \mathbf{B}\epsilon/2)\right)$$
$$\leq \operatorname{Vol}\left((r+\epsilon/2)\mathbf{B}\right)$$
$$= (r+\epsilon/2)^{d} \operatorname{Vol}(\mathbf{B}).$$

Hence, we can conclude that

$$M \le (2/\epsilon)^d (r + \epsilon/2)^d$$
$$= (1 + 2r/\epsilon)^d.$$

÷

2 Bracketing number

When dealing with functional spaces $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}\}$, a similar notion to covering numbers is the bracketing number, namely:

Definition 2.1. Let $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathbb{R}\}$ be a collection of functions, and μ a measure on \mathcal{X} . A set $\{[l_i, u_i]\}_{i=1}^N \subset \mathbb{R}^{\mathcal{X}}$ is a ϵ - bracket of \mathcal{F} in $L_p(\mu)$ if

$$\forall f \in \mathcal{F} \exists i \ s.t \ l_i \leq f(x) \leq \mu_i \ and \ \|u_i - l_i\|_{L_p(\mu)} \leq \epsilon$$

From ϵ brackets, we similarly get bracketing numbers by taking the infimum over N:

Definition 2.2. The bracketing number of \mathcal{F} is

$$N_{[]}(\mathcal{F}, L_p(\mu), \epsilon) := \inf \left\{ N \in \mathbb{N} : \exists an \ \epsilon \text{-bracket} \ \{[l_i, u_i]\}_{i=1}^N \ of \ \mathcal{F} \ in \ L_p(\mu) \right\}$$

Example 3 (Lipschitz loss functions): Let $\Theta \subset \mathbb{R}^d$ be compact, which implies that, for all $\epsilon > 0$, we have $N(\Theta, \|\cdot\|, \epsilon) < \infty$.

Let $\mathcal{F} = \{l_{\theta} : \theta \in \Theta\}$ where l_{θ} are L(X)-Lipschitz in θ , namely, for all x and θ_1, θ_2 :

$$|l_{\theta_1}(x) - l_{\theta_2}(x)| \le L(x) ||\theta_1 - \theta_2|$$

Then, assuming that $\mathbb{E}[L(X)] < \infty$:

$$N_{[]}(\mathcal{F}, L_1, \epsilon \mathbb{E}[L(X)]) \le N(\Theta, \|\cdot\|, \epsilon/2)$$

÷

Proof Let $\{\theta_i\}_{i=1}^N$ be an $\epsilon/2$ -covering of Θ , then let's define :

$$u_i(x) := l_{\theta_i}(x) + \frac{\epsilon}{2}L(x)$$
$$l_i(x) := l_{\theta_i}(x) - \frac{\epsilon}{2}L(x)$$

We know that for any $\theta \in \Theta$, $\exists \theta_i$ s,t $\|\theta - \theta_i\| \leq \frac{\epsilon}{2}$, and from Lipschitz properties of l_{θ} , we have:

$$\begin{aligned} |l_{\theta}(x) - l_{\theta_i}(x)| &\leq L(x) \left\| \theta - \theta_i \right\| \\ &\leq \frac{\epsilon}{2} L(x). \end{aligned}$$

Thus, for all $x \in \mathcal{X}$:

$$l_i(x) \le l_\theta(x) \le u_i(x)$$

As, for all $1 \le i \le N$, $\mathbb{E}[u_i(X) - l_i(X)] = \epsilon \mathbb{E}[L(X)]$, this ends the proof.

4

3 Examples and theorems of uniform laws of large numbers

Theorem 4 (First ULLN). Let $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ satisfy:

$$N_{[]}(\mathcal{F}, L_p, \epsilon) < \infty \text{ for all } \epsilon > 0$$

Then, under i.i.d. sampling

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |P_n f - Pf| \xrightarrow{p} 0$$

Proof For any given $\epsilon > 0$, let $\{[l_i, u_i]\}_{i=1}^N$ be an ϵ -bracket for \mathcal{F} . For any $f \in \mathcal{F}$, there exists $i \in [N]$ s.t $l_i \leq f \leq u_i$, and therefore we have:

$$P_n f - Pf \le P_n u_i - Pl_i$$

= $P_n u_i - Pu_i + Pu_i - Pl_i$
 $\le (P_n - P)u_i + \epsilon.$

Similarly:

$$Pf - P_n f \le Pu_i - P_n l_i \\ \le (P - P)l_i + \epsilon$$

This leads to:

$$\begin{aligned} \|P_n - P\|_{\mathcal{F}} &= \sup_{f \in \mathcal{F}} |P_n f - Pf| \\ &\leq \max_{1 \leq i \leq N} |(P_n - P)(u_i + l_i)| + \epsilon \\ &= o_p(1) + \epsilon \end{aligned}$$

as there are finitely many terms in the maximum.

Example 4 (Logistic Regression): Suppose that we are given pairs $Z = (X, Y) \in \mathbb{R}^d \times \{\pm 1\}$.

• <u>Goal</u>: Classification, find θ such that:

$$\operatorname{sign}(\theta^T x) = y$$

• Consider the following loss function:

$$l_{\theta}(x,y) = \log\left(1 + \exp(-yx^{T}\theta)\right)$$

Then, considering that $\phi: t \mapsto \log(1 + \exp(-t))$ is 1-Lipschitz (its derivative being bounded by 1), we get that:

$$|l_{\theta_1}(x,y) - l_{\theta_1}(x,y)| \le |x^T(\theta_1 - \theta_2)| \le ||x|| ||\theta_1 - \theta_2||$$

by Cauchy-Schwarz's inequality.

Applying the result seen in the example 3 with L(x) = ||x||, we see that, if $\Theta \subset \mathbb{R}^d$ is compact and X has a finite first moment, then:

$$||P_n - P||_{\mathcal{F}} = \sup_{\theta \in \Theta} |P_n l_\theta - P l_\theta| \xrightarrow{p} 0$$

ю

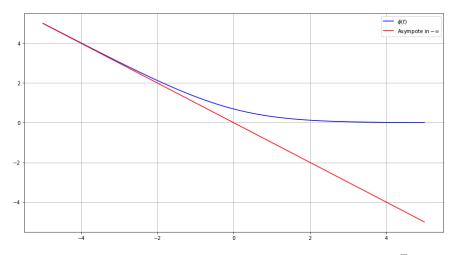


Figure 1: Loss function in logistic regression (in terms of $yx^T\theta$)