Stats 300b: Theory of Statistics Winter 2018

Lecture 8 — February 1

Lecturer: John Duchi Scribe: Enguerrand Horel

@ Warning: these notes may contain factual errors
Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-statistics
e Projections in Hilbert spaces
e Conditional expectations
e Hijek projections

e Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:

Definition 0.1. Given a symmetric kernel function h : X" — R, define the associated U-statistic
as

Un::(i) > h(Xp).

"/ BCn,|Bl=r

Definition 0.2. For each ¢ € {0,...,r}, define

he(x1,y ... xe) == Elh(z1, ..., 20, Xev1, -, Xp)]-
Define he to be the centered version of he, i.e.

he = he — Elhd] = he — 0,

where 0 = E[U,].
Definition 0.3. For each ¢ € {0,...,r}, define

Ce:= Var[he(Xy, ..., X.)] = E[he(X1,. .., Xe)%.
(Note that (o = 0.)
We also proved the two following results:

Claim 1. For A,B C [n] if [AN B| = ¢ (i.e. sets A and B have ¢ common elements) then
Cov(h(Xa),h(XB)) = ¢

Claim 2. As a consequence, in an asymptotic sense (i.e. for rfized and n — o), we have

-2
Var(U,,) = ECl + O(n*2),
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1 Projections

Definition 1.1. A wvector space H is a Hilbert space if it is a complete normed vector space and
we have an inner product
() HXxH—=R

which is linear in both arguments and (u,u) = ||u||?

Example: R" with (z,y) =27y =" xy

Example: L*(P) = {f : X = R, [ f(z)?dP(z) < oo} with (f,g) = [ f(z)g(z)dP(x), we have
(f,9) <IIfllgll| by Cauchy-Schwartz inequality.

Definition 1.2. Let S C H be a closed linear subspace of H (i.e. S contains 0 and all the linear
combinations of elements in itself). For any v € H we define the projection of v onto S as

ms(v) := argmin{||s — ’UH%}
seS

Theorem 3. The projection ws(v) exists, is unique, and is uniquely defined by the inequality
(v—ms(v),s) =0 (1)

forallse S

Example: In L?(P), let S be a collection of random variables such that E(s?) < oo for all s € S.
Then for T € L?(P), the projection of T onto span(S): 3, is the best L2-approximation of 7' by
random variables in S and we have Ep[(T — §)s] =0 for all s € S.

Conditional Expectations

Conditional expectations considered as projections in L2(P).
Let’s define S = linear span{g(Y’) for all measurable functions g with E[g?(Y)] < co}

Definition 1.3. If X € Ly(P), Y is a random variable, we define the conditional expectation
of X given Y: E[X | Y], as the projection of X onto S, or as the prediction of X (in mean square)
given observation Y, i.e. E[X | Y] is the unique (up to measure 0 sets) function of Y such that

E[(X -EX [Y])g(Y)] =0

forallg e S.

A few consequences:
1. E[X] = E[E[X | Y]] (take g = 1)
2. For any f, E[f(Y)X | Y] = f(Y)E[X | Y]

3. Tower property of E: E[E[X |Y,Z] | Y] =E[X | Y]



Consequence: this allows us to ignore smaller order terms in non-i.i.d. sums of random variables.

Let T}, be random variables and S,, be a sequence of subspaces of L?(P,). Let’s define S, = 7s, (Th)

Proposition 4. Let 0%(X) = Var(X), f (T" — 1 as n — oo then

T, —E[T,] 5. —E[5)] »
o(T,) Gy

Proof Let A, = T"gﬁﬁ” SU_(E[‘S;"]. Note that E[A,] = 0. Thus, if we can show that VarA,, — 0,

we are done.

A — Var [ D= BT o (Sn = ElS] ) _ 2Cov(Th, Sn)
Var(4,) = V; ( (T >+V ( )

U(Tn)g( )

B 2 Cov(Ty, Sn)

o(Tn)o(Sy)

Now using the fact that T, — 3n is orthogonal to S’n we have:
COV(TmSn) = E[T, S n] — E[T,]E [Sn]

= E[(T — Sn + Sn)Sn] — E[Sn]?
= E[57] — E[S,)?
= Va (S ).

Hence,

o(Ty)
O
Hajek Projections
Lemma 5 (11.10 in VDV). Let X1, ..., X, be independent. Let S = {Zg, i) :gi € LQ(P)}
IfET? < oo, then the projection S of T onto S is given by
S=> E[T| X - (n— 1)ET. (2)

Proof Note that
BIT| X ifi=j,
E[E[T | Xi] | X;] = e
ET if ¢ # 3.
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If S is as stated in Equation 2, then

E[S | X,] = (n — VET + E[T | X;] — (n — 1)ET = E[T | X},
E[(T - 8)g;(X;)] = E[E[T — S | X;g;(X;)]
=0,

—9)> gi(X;)| =0
j=1

Thus, S must be the projection of T onto S. 0

2 Application to U-statistics

The main idea is to use (Hajek) projections onto sets of the form :

Sn:{Zg, i) i) € Lo(P )}

to approximate U, by a sum of independent random variables.

Theorem 6. Let h be a symmetric kernel (function) of order r and let E[h?] < oo, U, be the
associated U-statistic, 6 = E[U,| = E[h(Xy,...,X,)]. If U, is the projection of U, — 6 onto S,, then

Unzilﬁl[ —01X;] = Zhl

Proof The first equality is just a direct application of Lemma 5.
Let 8.C [n], 8] = r, then

0 i ¢

E[h(X5) — 01X,] = {W) es

Then

E[U, — 0|X;] = (:f) Z: — 01X, = 1]

|Bl=rieB
n\ 1t /n—1 r
= XZ = — X’L
() (22} )mex = Zmex
It follows that . N
r
U, = —0|X hi(X;
0 = 01Xi) = 13 (X0



Theorem 7. Using the same notations as in the preceding theorem, we have:

1.
VU, —0—U,) 50
2. R
VU, % N0, r2¢1)
3.

(U, — 0) % N0, r2¢1)

Proof /nU, 4 N(0,72(;) is by direct application of the CLT.
Then, since

2
Var(U,) = ggl +0(n™?)

A /)"2
Var(U,,) = Egl

Var(Un)
Var(Uy)

Using, Property 4, we get that \/n(U, — ) — \/nU, 5o
By application of Slutsky’s theorem we can conclude.

— 1 asn — 0.

we have



