Warning: these notes may contain factual errors
Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-statistics

- Projections in Hilbert spaces
- Conditional expectations
- Hájek projections
- Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:
Definition 0.1. Given a symmetric kernel function $h: \mathcal{X}^{r} \rightarrow \mathbb{R}$, define the associated \boldsymbol{U}-statistic as

$$
U_{n}:=\frac{1}{\binom{n}{r}} \sum_{\beta \subseteq[n],|\beta|=r} h\left(X_{\beta}\right) .
$$

Definition 0.2. For each $c \in\{0, \ldots, r\}$, define

$$
h_{c}\left(x_{1}, \ldots, x_{c}\right):=\mathbb{E}\left[h\left(x_{1}, \ldots, x_{c}, X_{c+1}, \ldots, X_{r}\right)\right] .
$$

Define \hat{h}_{c} to be the centered version of h_{c}, i.e.

$$
\hat{h}_{c}:=h_{c}-\mathbb{E}\left[h_{c}\right]=h_{c}-\theta,
$$

where $\theta=\mathbb{E}\left[U_{n}\right]$.
Definition 0.3. For each $c \in\{0, \ldots, r\}$, define

$$
\zeta_{c}:=\operatorname{Var}\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)\right]=\mathbb{E}\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)^{2}\right] .
$$

(Note that $\left.\zeta_{0}=0.\right)$
We also proved the two following results:
Claim 1. For $A, B \subseteq[n]$ if $|A \cap B|=c$ (i.e. sets A and B have c common elements) then

$$
\operatorname{Cov}\left(h\left(X_{A}\right), h\left(X_{B}\right)\right)=\zeta_{c}
$$

Claim 2. As a consequence, in an asymptotic sense (i.e. for rfixed and $n \rightarrow \infty$), we have

$$
\operatorname{Var}\left(U_{n}\right)=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
$$

1 Projections

Definition 1.1. A vector space \mathcal{H} is a Hilbert space if it is a complete normed vector space and we have an inner product

$$
\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}
$$

which is linear in both arguments and $\langle u, u\rangle=\|u\|^{2}$
Example: \mathbb{R}^{n} with $\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$
Example: $L^{2}(P)=\left\{f: \mathcal{X} \rightarrow \mathbb{R}, \int f(x)^{2} d P(x)<\infty\right\}$ with $\langle f, g\rangle=\int f(x) g(x) d P(x)$, we have $\langle f, g\rangle \leq\|f\|\|g\| \|$ by Cauchy-Schwartz inequality.

Definition 1.2. Let $\mathcal{S} \subseteq \mathcal{H}$ be a closed linear subspace of \mathcal{H} (i.e. \mathcal{S} contains 0 and all the linear combinations of elements in itself). For any $v \in \mathcal{H}$ we define the projection of v onto \mathcal{S} as

$$
\pi_{\mathcal{S}}(v):=\underset{s \in \mathcal{S}}{\operatorname{argmin}}\left\{\|s-v\|_{2}^{2}\right\} .
$$

Theorem 3. The projection $\pi_{\mathcal{S}}(v)$ exists, is unique, and is uniquely defined by the inequality

$$
\begin{equation*}
\left\langle v-\pi_{\mathcal{S}}(v), s\right\rangle=0 \tag{1}
\end{equation*}
$$

for all $s \in \mathcal{S}$

Example: In $L^{2}(P)$, let \mathcal{S} be a collection of random variables such that $\mathbb{E}\left(s^{2}\right)<\infty$ for all $s \in \mathcal{S}$. Then for $T \in L^{2}(P)$, the projection of T onto $\operatorname{span}(\mathcal{S})$: \hat{s}, is the best L^{2}-approximation of T by random variables in \mathcal{S} and we have $\mathbb{E}_{P}[(T-\hat{s}) s]=0$ for all $s \in \mathcal{S}$.

Conditional Expectations

Conditional expectations considered as projections in $L^{2}(P)$.
Let's define $\mathcal{S}=$ linear $\operatorname{span}\left\{g(Y)\right.$ for all measurable functions g with $\left.\mathbb{E}\left[g^{2}(Y)\right]<\infty\right\}$
Definition 1.3. If $X \in L_{2}(P), Y$ is a random variable, we define the conditional expectation of X given $Y: \mathbb{E}[X \mid Y]$, as the projection of X onto \mathcal{S}, or as the prediction of X (in mean square) given observation Y, i.e. $\mathbb{E}[X \mid Y]$ is the unique (up to measure 0 sets) function of Y such that

$$
\mathbb{E}[(X-\mathbb{E}[X \mid Y]) g(Y)]=0
$$

for all $g \in \mathcal{S}$.

A few consequences:

1. $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]($ take $g=1)$
2. For any $f, \mathbb{E}[f(Y) X \mid Y]=f(Y) \mathbb{E}[X \mid Y]$
3. Tower property of $\mathbb{E}: \mathbb{E}[\mathbb{E}[X \mid Y, Z] \mid Y]=\mathbb{E}[X \mid Y]$

Consequence: this allows us to ignore smaller order terms in non-i.i.d. sums of random variables.
Let T_{n} be random variables and \mathcal{S}_{n} be a sequence of subspaces of $L^{2}\left(P_{n}\right)$. Let's define $\hat{S}_{n}=\pi_{\mathcal{S}_{n}}\left(T_{n}\right)$
Proposition 4. Let $\sigma^{2}(X)=\operatorname{Var}(X)$, if $\frac{\sigma^{2}\left(T_{n}\right)}{\sigma^{2}\left(\hat{S}_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$ then

$$
\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}-\frac{\hat{S}_{n}-\mathbb{E}\left[\hat{S}_{n}\right]}{\sigma\left(\hat{S}_{n}\right)} \xrightarrow{p} 0
$$

Proof Let $A_{n}=\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}-\frac{\hat{S}_{n}-\mathbb{E}\left[\hat{S}_{n}\right]}{\sigma\left(\hat{S}_{n}\right)}$. Note that $\mathbb{E}\left[A_{n}\right]=0$. Thus, if we can show that $\operatorname{Var} A_{n} \rightarrow 0$, we are done.

$$
\begin{gathered}
\operatorname{Var}\left(A_{n}\right)=\operatorname{Var}\left(\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}\right)+\operatorname{Var}\left(\frac{\hat{S}_{n}-\mathbb{E}\left[\hat{S}_{n}\right]}{\sigma\left(\hat{S}_{n}\right)}\right)-\frac{2 \operatorname{Cov}\left(T_{n}, \hat{S}_{n}\right)}{\sqrt{\sigma\left(T_{n}\right) \sigma\left(\hat{S}_{n}\right)}} \\
=2-\frac{2 \operatorname{Cov}\left(T_{n}, \hat{S}_{n}\right)}{\sqrt{\sigma\left(T_{n}\right) \sigma\left(\hat{S}_{n}\right)}}
\end{gathered}
$$

Now using the fact that $T_{n}-\hat{S}_{n}$ is orthogonal to \hat{S}_{n} we have:

$$
\begin{aligned}
\operatorname{Cov}\left(T_{n}, \hat{S}_{n}\right) & =\mathbb{E}\left[T_{n} \hat{S}_{n}\right]-\mathbb{E}\left[T_{n}\right] \mathbb{E}\left[\hat{S}_{n}\right] \\
& =\mathbb{E}\left[\left(T_{n}-\hat{S}_{n}+\hat{S}_{n}\right) \hat{S}_{n}\right]-\mathbb{E}\left[\hat{S}_{n}\right]^{2} \\
& =\mathbb{E}\left[\hat{S}_{n}^{2}\right]-\mathbb{E}\left[\hat{S}_{n}\right]^{2} \\
& =\operatorname{Var}\left(\hat{S}_{n}\right) .
\end{aligned}
$$

Hence,

$$
\operatorname{Var}\left(A_{n}\right)=2\left(1-\frac{\sigma\left(\hat{S}_{n}\right)}{\sigma\left(T_{n}\right)}\right) \rightarrow 0
$$

Hájek Projections

Lemma 5 (11.10 in VDV). Let X_{1}, \ldots, X_{n} be independent. Let $\mathcal{S}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i} \in L_{2}(P)\right\}$. If $\mathbb{E} T^{2}<\infty$, then the projection \hat{S} of T onto \mathcal{S} is given by

$$
\begin{equation*}
\hat{S}=\sum_{i=1}^{n} \mathbb{E}\left[T \mid X_{i}\right]-(n-1) \mathbb{E} T . \tag{2}
\end{equation*}
$$

Proof Note that

$$
\mathbb{E}\left[\mathbb{E}\left[T \mid X_{i}\right] \mid X_{j}\right]= \begin{cases}\mathbb{E}\left[T \mid X_{i}\right] & \text { if } i=j, \\ \mathbb{E} T & \text { if } i \neq j .\end{cases}
$$

If \hat{S} is as stated in Equation 2, then

$$
\begin{aligned}
\mathbb{E}\left[\hat{S} \mid X_{j}\right] & =(n-1) \mathbb{E} T+\mathbb{E}\left[T \mid X_{j}\right]-(n-1) \mathbb{E} T=\mathbb{E}\left[T \mid X_{j}\right], \\
\mathbb{E}\left[(T-\hat{S}) g_{j}\left(X_{j}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[T-\hat{S} \mid X_{j}\right] g_{j}\left(X_{j}\right)\right] \\
& =0, \\
\mathbb{E}\left[(T-\hat{S}) \sum_{j=1}^{n} g_{j}\left(X_{j}\right)\right] & =0 .
\end{aligned}
$$

Thus, \hat{S} must be the projection of T onto \mathcal{S}.

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

$$
\mathcal{S}_{n}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i}\left(X_{i}\right) \in L_{2}(P)\right\} .
$$

to approximate U_{n} by a sum of independent random variables.
Theorem 6. Let h be a symmetric kernel (function) of order r and let $\mathbb{E}\left[h^{2}\right]<\infty, U_{n}$ be the associated U-statistic, $\theta=\mathbb{E}\left[U_{n}\right]=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{n}\right)\right]$. If \hat{U}_{n} is the projection of $U_{n}-\theta$ onto \mathcal{S}_{n} then

$$
\hat{U}_{n}=\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right]=\frac{r}{n} \sum_{i=1}^{n} h_{1}\left(X_{i}\right)
$$

Proof The first equality is just a direct application of Lemma 5.
Let $\beta \subseteq[n],|\beta|=r$, then

$$
\mathbb{E}\left[h\left(X_{\beta}\right)-\theta \mid X_{i}\right]= \begin{cases}0 & i \notin \beta \\ h_{1}\left(X_{i}\right) & i \in \beta\end{cases}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[U_{n}-\theta \mid X_{i}\right] & =\binom{n}{r}^{-1} \sum_{|\beta|=r} \mathbb{E}\left[h\left(X_{\beta}\right)-\theta \mid X_{i}=x\right] \\
& =\binom{n}{r}^{-1} \sum_{|\beta|=r, i \in \beta} h_{1}\left(X_{i}\right) \\
& =\binom{n}{r}^{-1}\binom{n-1}{r-1} h_{1}\left(X_{i}\right)=\frac{r}{n} h_{1}\left(X_{i}\right)
\end{aligned}
$$

It follows that

$$
\hat{U}_{n}=\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right]=\frac{r}{n} \sum_{i=1}^{n} h_{1}\left(X_{i}\right)
$$

Theorem 7. Using the same notations as in the preceding theorem, we have:
1.

$$
\sqrt{n}\left(U_{n}-\theta-\hat{U}_{n}\right) \xrightarrow{\mathbb{P}} 0
$$

2.

$$
\sqrt{n} \hat{U}_{n} \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)
$$

3.

$$
\sqrt{n}\left(U_{n}-\theta\right) \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)
$$

Proof $\sqrt{n} \hat{U}_{n} \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)$ is by direct application of the CLT.
Then, since

$$
\begin{aligned}
& \operatorname{Var}\left(U_{n}\right)=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right) \\
& \operatorname{Var}\left(\hat{U}_{n}\right)=\frac{r^{2}}{n} \zeta_{1}
\end{aligned}
$$

we have $\frac{\operatorname{Var}\left(U_{n}\right)}{\operatorname{Var}\left(\hat{U}_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$.
Using, Property 4 , we get that $\sqrt{n}\left(U_{n}-\theta\right)-\sqrt{n} \hat{U}_{n} \xrightarrow{\mathbb{P}} 0$
By application of Slutsky's theorem we can conclude.

