
Stats 300b: Theory of Statistics Winter 2018

Lecture 8 – February 1

Lecturer: John Duchi Scribe: Enguerrand Horel

� Warning: these notes may contain factual errors

Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-statistics

• Projections in Hilbert spaces

• Conditional expectations

• Hájek projections

• Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:

Definition 0.1. Given a symmetric kernel function h : X r → R, define the associated U-statistic
as

Un :=
1(
n
r

) ∑
β⊆[n],|β|=r

h(Xβ).

Definition 0.2. For each c ∈ {0, . . . , r}, define

hc(x1, . . . , xc) := E[h(x1, . . . , xc, Xc+1, . . . , Xr)].

Define ĥc to be the centered version of hc, i.e.

ĥc := hc − E[hc] = hc − θ,

where θ = E[Un].

Definition 0.3. For each c ∈ {0, . . . , r}, define

ζc := Var[hc(X1, . . . , Xc)] = E[hc(X1, . . . , Xc)
2].

(Note that ζ0 = 0.)

We also proved the two following results:

Claim 1. For A,B ⊆ [n] if |A ∩B| = c (i.e. sets A and B have c common elements) then

Cov(h(XA), h(XB)) = ζc

Claim 2. As a consequence, in an asymptotic sense (i.e. for rfixed and n→∞), we have

Var(Un) =
r2

n
ζ1 +O(n−2),
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1 Projections

Definition 1.1. A vector space H is a Hilbert space if it is a complete normed vector space and
we have an inner product

〈·, ·〉 : H×H → R

which is linear in both arguments and 〈u, u〉 = ||u||2

Example: Rn with 〈x, y〉 = xT y =
∑n

i=1 xiyi

Example: L2(P ) = {f : X → R,
∫
f(x)2dP (x) < ∞} with 〈f, g〉 =

∫
f(x)g(x)dP (x), we have

〈f, g〉 ≤ ||f |||g||| by Cauchy-Schwartz inequality.

Definition 1.2. Let S ⊆ H be a closed linear subspace of H (i.e. S contains 0 and all the linear
combinations of elements in itself). For any v ∈ H we define the projection of v onto S as

πS(v) := argmin
s∈S

{‖s− v‖22}.

Theorem 3. The projection πS(v) exists, is unique, and is uniquely defined by the inequality

〈v − πS(v), s〉 = 0 (1)

for all s ∈ S

Example: In L2(P ), let S be a collection of random variables such that E(s2) <∞ for all s ∈ S.
Then for T ∈ L2(P ), the projection of T onto span(S): ŝ, is the best L2-approximation of T by
random variables in S and we have EP [(T − ŝ)s] = 0 for all s ∈ S.

Conditional Expectations

Conditional expectations considered as projections in L2(P ).
Let’s define S = linear span{g(Y ) for all measurable functions g with E[g2(Y )] <∞}

Definition 1.3. If X ∈ L2(P ), Y is a random variable, we define the conditional expectation
of X given Y : E[X | Y ], as the projection of X onto S, or as the prediction of X (in mean square)
given observation Y , i.e. E[X | Y ] is the unique (up to measure 0 sets) function of Y such that

E [(X − E[X | Y ]) g(Y )] = 0

for all g ∈ S.

A few consequences:

1. E[X] = E[E[X | Y ]] (take g = 1)

2. For any f , E[f(Y )X | Y ] = f(Y )E[X | Y ]

3. Tower property of E: E[E[X | Y,Z] | Y ] = E[X | Y ]
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Consequence: this allows us to ignore smaller order terms in non-i.i.d. sums of random variables.

Let Tn be random variables and Sn be a sequence of subspaces of L2(Pn). Let’s define Ŝn = πSn(Tn)

Proposition 4. Let σ2(X) = Var(X), if σ2(Tn)

σ2(Ŝn)
→ 1 as n→∞ then

Tn − E[Tn]

σ(Tn)
− Ŝn − E[Ŝn]

σ(Ŝn)

p→ 0

Proof Let An = Tn−E[Tn]
σ(Tn)

− Ŝn−E[Ŝn]

σ(Ŝn)
. Note that E[An] = 0. Thus, if we can show that VarAn → 0,

we are done.

Var(An) = Var

(
Tn − E[Tn]

σ(Tn)

)
+ Var

(
Ŝn − E[Ŝn]

σ(Ŝn)

)
− 2 Cov(Tn, Ŝn)√

σ(Tn)σ(Ŝn)

= 2− 2 Cov(Tn, Ŝn)√
σ(Tn)σ(Ŝn)

Now using the fact that Tn − Ŝn is orthogonal to Ŝn we have:

Cov(Tn, Ŝn) = E[TnŜn]− E[Tn]E[Ŝn]

= E[(Tn − Ŝn + Ŝn)Ŝn]− E[Ŝn]2

= E[Ŝ2
n]− E[Ŝn]2

= Var(Ŝn).

Hence,

Var(An) = 2

(
1− σ(Ŝn)

σ(Tn)

)
→ 0

Hájek Projections

Lemma 5 (11.10 in VDV). Let X1, . . . , Xn be independent. Let S =

{
n∑
i=1

gi(Xi) : gi ∈ L2(P )

}
.

If ET 2 <∞, then the projection Ŝ of T onto S is given by

Ŝ =

n∑
i=1

E[T | Xi]− (n− 1)ET. (2)

Proof Note that

E [E[T | Xi] | Xj ] =

{
E[T | Xi] if i = j,

ET if i 6= j.
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If Ŝ is as stated in Equation 2, then

E[Ŝ | Xj ] = (n− 1)ET + E[T | Xj ]− (n− 1)ET = E[T | Xj ],

E[(T − Ŝ)gj(Xj)] = E[E[T − Ŝ | Xj ]gj(Xj)]

= 0,

E

(T − Ŝ)
n∑
j=1

gj(Xj)

 = 0.

Thus, Ŝ must be the projection of T onto S.

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

Sn =
{ n∑
i=1

gi(Xi) : gi(Xi) ∈ L2(P )
}
.

to approximate Un by a sum of independent random variables.

Theorem 6. Let h be a symmetric kernel (function) of order r and let E[h2] < ∞, Un be the
associated U-statistic, θ = E[Un] = E[h(X1, . . . , Xn)]. If Ûn is the projection of Un−θ onto Sn then

Ûn =

n∑
i=1

E[Un − θ|Xi] =
r

n

n∑
i=1

h1(Xi)

Proof The first equality is just a direct application of Lemma 5.
Let β ⊆ [n], |β| = r, then

E[h(Xβ)− θ|Xi] =

{
0 i 6∈ β
h1(Xi) i ∈ β

.

Then

E[Un − θ|Xi] =

(
n

r

)−1 ∑
|β|=r

E[h(Xβ)− θ|Xi = x]

=

(
n

r

)−1 ∑
|β|=r,i∈β

h1(Xi)

=

(
n

r

)−1(n− 1

r − 1

)
h1(Xi) =

r

n
h1(Xi)

It follows that

Ûn =

n∑
i=1

E[Un − θ|Xi] =
r

n

n∑
i=1

h1(Xi)
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Theorem 7. Using the same notations as in the preceding theorem, we have:

1. √
n(Un − θ − Ûn)

P−→ 0

2. √
nÛn

d−→ N(0, r2ζ1)

3. √
n(Un − θ)

d−→ N(0, r2ζ1)

Proof
√
nÛn

d−→ N(0, r2ζ1) is by direct application of the CLT.
Then, since

Var(Un) =
r2

n
ζ1 +O(n−2)

Var(Ûn) =
r2

n
ζ1

we have Var(Un)

Var(Ûn)
→ 1 as n→∞.

Using, Property 4, we get that
√
n(Un − θ)−

√
nÛn

P−→ 0
By application of Slutsky’s theorem we can conclude.
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