Stats 300b: Theory of Statistics

Winter 2018

Lecture 8 – February 1

Lecturer: John Duchi

Scribe: Enguerrand Horel

Warning: these notes may contain factual errors

Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-statistics

- Projections in Hilbert spaces
- Conditional expectations
- Hájek projections
- Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:

Definition 0.1. Given a symmetric kernel function $h : \mathcal{X}^r \to \mathbb{R}$, define the associated *U*-statistic as

$$U_n := \frac{1}{\binom{n}{r}} \sum_{\beta \subseteq [n], |\beta| = r} h(X_\beta)$$

Definition 0.2. For each $c \in \{0, \ldots, r\}$, define

$$h_c(x_1,\ldots,x_c) := \mathbb{E}[h(x_1,\ldots,x_c,X_{c+1},\ldots,X_r)].$$

Define h_c to be the centered version of h_c , i.e.

$$\hat{h}_c := h_c - \mathbb{E}[h_c] = h_c - \theta,$$

where $\theta = \mathbb{E}[U_n]$.

Definition 0.3. For each $c \in \{0, \ldots, r\}$, define

$$\zeta_c := \operatorname{Var}[h_c(X_1, \dots, X_c)] = \mathbb{E}[h_c(X_1, \dots, X_c)^2].$$

(Note that $\zeta_0 = 0.$)

We also proved the two following results:

Claim 1. For $A, B \subseteq [n]$ if $|A \cap B| = c$ (i.e. sets A and B have c common elements) then

$$\operatorname{Cov}(h(X_A), h(X_B)) = \zeta_c$$

Claim 2. As a consequence, in an asymptotic sense (i.e. for rfixed and $n \to \infty$), we have

$$\operatorname{Var}(U_n) = \frac{r^2}{n}\zeta_1 + O(n^{-2}),$$

1 Projections

Definition 1.1. A vector space \mathcal{H} is a Hilbert space if it is a complete normed vector space and we have an inner product

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$$

which is linear in both arguments and $\langle u, u \rangle = ||u||^2$

Example: \mathbb{R}^n with $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

Example: $L^2(P) = \{f : \mathcal{X} \to \mathbb{R}, \int f(x)^2 dP(x) < \infty\}$ with $\langle f, g \rangle = \int f(x)g(x)dP(x)$, we have $\langle f, g \rangle \leq ||f|||g|||$ by Cauchy-Schwartz inequality.

Definition 1.2. Let $S \subseteq H$ be a closed linear subspace of H (i.e. S contains 0 and all the linear combinations of elements in itself). For any $v \in H$ we define the **projection of** v onto S as

$$\pi_{\mathcal{S}}(v) := \operatorname*{argmin}_{s \in \mathcal{S}} \{ \|s - v\|_2^2 \}.$$

Theorem 3. The projection $\pi_{\mathcal{S}}(v)$ exists, is unique, and is uniquely defined by the inequality

$$\langle v - \pi_{\mathcal{S}}(v), s \rangle = 0 \tag{1}$$

for all $s \in S$

Example: In $L^2(P)$, let S be a collection of random variables such that $\mathbb{E}(s^2) < \infty$ for all $s \in S$. Then for $T \in L^2(P)$, the projection of T onto $\operatorname{span}(S)$: \hat{s} , is the best L^2 -approximation of T by random variables in S and we have $\mathbb{E}_P[(T - \hat{s})s] = 0$ for all $s \in S$.

Conditional Expectations

Conditional expectations considered as projections in $L^2(P)$. Let's define $S = \text{linear span}\{g(Y) \text{ for all measurable functions } g \text{ with } \mathbb{E}[g^2(Y)] < \infty\}$

Definition 1.3. If $X \in L_2(P)$, Y is a random variable, we define the **conditional expectation** of X given Y: $\mathbb{E}[X | Y]$, as the projection of X onto S, or as the prediction of X (in mean square) given observation Y, i.e. $\mathbb{E}[X | Y]$ is the unique (up to measure 0 sets) function of Y such that

$$\mathbb{E}\left[\left(X - \mathbb{E}[X \mid Y]\right)g(Y)\right] = 0$$

for all $g \in S$.

A few consequences:

- 1. $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$ (take g = 1)
- 2. For any f, $\mathbb{E}[f(Y)X \mid Y] = f(Y)\mathbb{E}[X \mid Y]$
- 3. Tower property of \mathbb{E} : $\mathbb{E}[\mathbb{E}[X \mid Y, Z] \mid Y] = \mathbb{E}[X \mid Y]$

Consequence: this allows us to ignore smaller order terms in non-i.i.d. sums of random variables. Let T_n be random variables and S_n be a sequence of subspaces of $L^2(P_n)$. Let's define $\hat{S}_n = \pi_{S_n}(T_n)$ **Proposition 4.** Let $\sigma^2(X) = \operatorname{Var}(X)$, if $\frac{\sigma^2(T_n)}{\sigma^2(\hat{S}_n)} \to 1$ as $n \to \infty$ then

$$\frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)} - \frac{\hat{S}_n - \mathbb{E}[\hat{S}_n]}{\sigma(\hat{S}_n)} \xrightarrow{p} 0$$

Proof Let $A_n = \frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)} - \frac{\hat{S}_n - \mathbb{E}[\hat{S}_n]}{\sigma(\hat{S}_n)}$. Note that $\mathbb{E}[A_n] = 0$. Thus, if we can show that $\operatorname{Var} A_n \to 0$, we are done.

$$\operatorname{Var}(A_n) = \operatorname{Var}\left(\frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)}\right) + \operatorname{Var}\left(\frac{\hat{S}_n - \mathbb{E}[\hat{S}_n]}{\sigma(\hat{S}_n)}\right) - \frac{2\operatorname{Cov}(T_n, \hat{S}_n)}{\sqrt{\sigma(T_n)\sigma(\hat{S}_n)}}$$
$$= 2 - \frac{2\operatorname{Cov}(T_n, \hat{S}_n)}{\sqrt{\sigma(T_n)\sigma(\hat{S}_n)}}$$

Now using the fact that $T_n - \hat{S}_n$ is orthogonal to \hat{S}_n we have:

$$Cov(T_n, \hat{S}_n) = \mathbb{E}[T_n \hat{S}_n] - \mathbb{E}[T_n]\mathbb{E}[\hat{S}_n]$$

= $\mathbb{E}[(T_n - \hat{S}_n + \hat{S}_n)\hat{S}_n] - \mathbb{E}[\hat{S}_n]^2$
= $\mathbb{E}[\hat{S}_n^2] - \mathbb{E}[\hat{S}_n]^2$
= $Var(\hat{S}_n).$

Hence,

$$\operatorname{Var}(A_n) = 2\left(1 - \frac{\sigma(\hat{S}_n)}{\sigma(T_n)}\right) \to 0$$

Hájek Projections

Lemma 5 (11.10 in VDV). Let X_1, \ldots, X_n be independent. Let $S = \left\{ \sum_{i=1}^n g_i(X_i) : g_i \in L_2(P) \right\}$. If $\mathbb{E}T^2 < \infty$, then the projection \hat{S} of T onto S is given by

$$\hat{S} = \sum_{i=1}^{n} \mathbb{E}[T \mid X_i] - (n-1)\mathbb{E}T.$$
(2)

Proof Note that

$$\mathbb{E}\left[\mathbb{E}[T \mid X_i] \mid X_j\right] = \begin{cases} \mathbb{E}[T \mid X_i] & \text{if } i = j, \\ \mathbb{E}T & \text{if } i \neq j. \end{cases}$$

If \hat{S} is as stated in Equation 2, then

$$\mathbb{E}[\hat{S} \mid X_j] = (n-1)\mathbb{E}T + \mathbb{E}[T \mid X_j] - (n-1)\mathbb{E}T = \mathbb{E}[T \mid X_j],$$
$$\mathbb{E}[(T - \hat{S})g_j(X_j)] = \mathbb{E}[\mathbb{E}[T - \hat{S} \mid X_j]g_j(X_j)]$$
$$= 0,$$
$$\mathbb{E}\left[(T - \hat{S})\sum_{j=1}^n g_j(X_j)\right] = 0.$$

Thus, \hat{S} must be the projection of T onto S.

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

$$\mathcal{S}_n = \Big\{ \sum_{i=1}^n g_i(X_i) : g_i(X_i) \in L_2(P) \Big\}.$$

to approximate U_n by a sum of independent random variables.

Theorem 6. Let h be a symmetric kernel (function) of order r and let $\mathbb{E}[h^2] < \infty$, U_n be the associated U-statistic, $\theta = \mathbb{E}[U_n] = \mathbb{E}[h(X_1, \ldots, X_n)]$. If \hat{U}_n is the projection of $U_n - \theta$ onto S_n then

$$\hat{U}_n = \sum_{i=1}^n \mathbb{E}[U_n - \theta | X_i] = \frac{r}{n} \sum_{i=1}^n h_1(X_i)$$

Proof The first equality is just a direct application of Lemma 5. Let $\beta \subseteq [n], |\beta| = r$, then

$$\mathbb{E}[h(X_{\beta}) - \theta | X_i] = \begin{cases} 0 & i \notin \beta \\ h_1(X_i) & i \in \beta \end{cases}.$$

Then

$$\mathbb{E}[U_n - \theta | X_i] = \binom{n}{r}^{-1} \sum_{|\beta|=r} \mathbb{E}[h(X_\beta) - \theta | X_i = x]$$
$$= \binom{n}{r}^{-1} \sum_{|\beta|=r, i \in \beta} h_1(X_i)$$
$$= \binom{n}{r}^{-1} \binom{n-1}{r-1} h_1(X_i) = \frac{r}{n} h_1(X_i)$$

It follows that

$$\hat{U}_n = \sum_{i=1}^n \mathbb{E}[U_n - \theta | X_i] = \frac{r}{n} \sum_{i=1}^n h_1(X_i)$$

-	-	-	٦.
			н
			н

Theorem 7. Using the same notations as in the preceding theorem, we have:

$$\sqrt{n}(U_n - \theta - \hat{U}_n) \xrightarrow{\mathbb{P}} 0$$

2.

1.

$$\sqrt{n}\hat{U}_n \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$$

3.

$$\sqrt{n}(U_n - \theta) \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$$

Proof $\sqrt{n}\hat{U}_n \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$ is by direct application of the CLT. Then, since

$$\operatorname{Var}(U_n) = \frac{r^2}{n}\zeta_1 + O(n^{-2})$$
$$\operatorname{Var}(\hat{U}_n) = \frac{r^2}{n}\zeta_1$$

we have $\frac{\operatorname{Var}(U_n)}{\operatorname{Var}(\hat{U}_n)} \to 1$ as $n \to \infty$.

Using, Property 4, we get that $\sqrt{n}(U_n - \theta) - \sqrt{n}\hat{U}_n \xrightarrow{\mathbb{P}} 0$ By application of Slutsky's theorem we can conclude.