
Stats 300b: Theory of Statistics Winter 2018

Lecture 6 – January 25

Lecturer: John Duchi Scribe: Matthew Tyler

� Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1 and Testing Statistical Hypotheses
Ch. 12.4

Outline:

• Finish Basics of Hypothesis Testing

• Likelihood Ratio Tests

• Wald Tests

• Rao/Score Tests

1 Asymptotics of Tests

Goal: Understand asymptotics of tests. Let Tn be a sequence of tests, meaning Tn = (X1, . . . , Xn)
and Tn either rejects or does not reject [the null hypothesis].

Definition 1.1. For a sequence of tests Tn, the uniform asymptotic level of Tn for null hypothesis
H0 : θ ∈ Θ0 is

lim sup
n→∞

sup
θ∈Θ0

Pθ(Tn rejects).

The pointwise asymptotic level of Tn is

sup
θ∈Θ0

lim sup
n→∞

Pθ(Tn rejects).

Remark The pointwise asymptotic level of Tn is never more than the uniform asymptotic level
of Tn. However, we will usually only concern ourselves with the pointwise asymptotic level.

2 Generalized Likelihood Ratio Tests

Goal: Test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ, assuming Θ0 ⊂ Θ.

We make use of the following test statistic:

T (x) := log
supθ∈Θ pθ(x)

supθ∈Θ0
pθ(x)

.
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Proposition 1 (Wilk’s, simplified). Let Θ0 = {θ0},Θ ⊆ Rd be open. Let Ln(X; θ) =
∑n

i=1 `θ(Xi) =∑n
i=1 pθ(Xi). Define ∆n := Ln(X; θ̂n)− Ln(X; θ0) = T (X). Then under the typical conditions for

asymptotic efficiency of the MLE,

2∆n
d→
H0

χ2
d.

Note χ2
d
dist
= ‖w‖22 where w ∼ N (0, Id×d).

Proof Under H0, θ̂n
p→ θ0. For large enough n,

0 = ∇Ln(X; θ̂n) = ∇Ln(X; θ0) +∇2Ln(X; θ0)(θ̂n − θ0) +
n∑
i=1

Err(i)(θ̂n − θ0),

where Err(i) = Op(||θ̂n − θ0||). This was a Taylor approximation of the gradient of Ln. In addition,
we take a second-order Taylor approximation of Ln:

Ln(X; θ̂n) = Ln(X; θ0) +∇Ln(X; θ0)(θ̂n − θ0) +
1

2
(θ̂n − θ0)T∇2Ln(X; θ0)(θ̂n − θ0) + op(||θ̂n − θ0||).

After substituting the first equation into the second,

∆n = Ln(X; θ̂n)− Ln(X; θ0)

= −1

2
(θ̂n − θ0)T∇2Ln(X; θ0)(θ̂n − θ0) +

n∑
i=1

(θ̂n − θ0)Err(i)(θ̂n − θ0) + op(1).

Now let wn =
√
n(θ̂n − θ0), so wn

d→
H0

N (0, I−1
θ0

). With this new notation,

∆n = −1

2
wTn

(
1

n
∇2Ln(X; θ0)

)
︸ ︷︷ ︸

p→−Iθ0

wn + wTn

(
1

n

n∑
i=1

Err(i)

)
︸ ︷︷ ︸

p→0

wn + op(1)

=
1

2
wTn Iθ0wn + op(1)

d→ 1

2
χ2
d.

Thus 2∆n
d→ χ2

d.

Remark

• Could use likelihood ratio test for testing H0 : θ = θ0, but may require substantial computa-
tion; e.g., to get the MLE.

• Can we use simpler tests to get the same asymptotic χ2 behavior?

• Note that everything is quadratic. Let’s just start with quadratics instead!
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3 Wald Tests

Definition 3.1. A Wald confidence ellipse is

Cn,α = {θ ∈ Rd : (θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ U2
d,α/n}

where U2
d,α is [uniquely] determined by P(χ2

d ≥ U2
d,α) = α).

Remark We showed last lecture that If θ̂n is an efficient estimator for θ0 then n(θ̂n−θ0)Iθ̂n(θ̂n−

θ0)
d→
Pθ
χ2
d

dist
= ‖w‖22 , w ∼ N (0, Id×d).

Definition 3.2. A Wald test of point null θ = θ0 (against θ 6= θ0) is

Tn(X) : =

{
Reject if θ0 /∈ Cn,α
Don’t Reject otherwise

= Reject if (θ0 − θ̂n)T Iθ̂n(θ0 − θ̂n) > U2
d,α/n.

Proposition 2. For testing H0 : θ = θ0, a Wald test is asymptotically level α.

Proof Immediate from earlier results.

Remark

• For the Fisher Information, we can replace Iθ̂n with Iθ0 and the asymptotic level is the same.

• Works with any efficient estimator — not just the MLE.

• One weakness is that likelihood ratio and Wald tests can only handle point nulls. What if we
have nuisance parameters?

Example 1: Xi
iid∼ N (µ, σ2). H0 = {µ = 0,

”nuisance parameter”︷ ︸︸ ︷
σ2 ≥ 0 }. None of the results we have

gathered so far apply in this case. ♣

Let us now consider smooth problems with I(θ) ∈ Rd×d. Define Σ(θ) := I(θ)−1. Assume

efficient estimators
√
n(θ̂n − θ0)

d→
Pθ
N (0,Σ(θ). We will consider the case where we only care about

estimating functions of θ, usually just certain coordinates. Define

[v]1:k =


v1

v2

...
vk

 .
That is, just the first k coordinates of v ∈ Rd, k ≤ d.

Similarly, define Σ(k) ∈ Rk×k as the leading principal minor (of order k). Specifically,

Σ =

[
Σ(k) · · ·
...

. . .

]
.
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Then automatically due to the properties of the multivariate normal,

√
n([θ̂n]1:k − [θ0]1:k)

d→ N (0,Σ(k)(θ0)).

Note that Σ(k)(θ) acts as the inverse Fisher Information for the first k coordinates.

Lemma 3 (Schur Complement). Suppose

A =

[
A11 A12

A21 A22

]
, A = AT , A � 0.

If M = A−1, then M11 =
(
A11 −A12A

−1
22 A21

)−1
.

When θ̂n is efficient for θ, then

n([θ̂n]1:k − [θ0]1:k)
T
[
Σ(k)(θ̂n)

]−1
([θ̂n]1:k − [θ0]1:k)

d→ χ2
k,

where [
Σ(k)(θ̂n)

]−1
= I11(θ̂n)− I12(θ̂n)I22(θ̂n)−1I21(θ̂n).

Now we can design a Wald-type test of these composite nulls with nuisance parameters.

Definition 3.3 (Wald Test, Composite). Let H0 : {θ ∈ Rd : [θ]1:k = [θ0]1:k}. Define the acceptance
region as

Cn,α =

{
θ ∈ Rd : ([θ]1:k − [θ0]1:k)

T
[
Σ(k)(θ0)

]−1
([θ]1:k − [θ0]1:k) ≤ U2

k,n/n

}
where Udk,n is [uniquely] determined by P(χ2

k ≥ U2
k,n) = α. The Wald test for composite nulls is

given by

Tn :=

{
Reject if θ̂n /∈ Cn,α
Don’t Reject otherwise

.

Proposition 4. If θ̂n is efficient for θ in model {Pθ}θ∈Θ, then Tn is pointwise asymptotic level α.
That is,

sup
θ∈Θ0

lim sup
n→∞

Pθ(Tn rejects) = α.

Remark

• Cannot substitute θ0 for θ̂n in Iθ̂n because we must estimate the nuisance parameters.

• In terms of convergence in distribution, it is not necessary to estimate the nuisance parameters
efficiently — since they only appear in the estimated Fisher Information. An estimator which
is only consistent is sufficient to apply Slutsky’s lemma and get the desired asymptotic testing
level.

Example 2: Let H0 = {N (µ,Σ) : Σ � 0, θ = 0}. Then

Cn,α = {θ ∈ Rd : θT Σ̂−1θ ≤ U2
d,α/n}

where Σ̂ = 1
n

∑n
i=1(Xi − X̄n)(Xi − X̄n)T . Then Pθ,Σ(X̄n ∈ Cn,α)→ α as n→∞. The estimate of

Σ̂ only needs to be consistent. ♣
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4 Rao/Score Tests

Goal: If the MLE is difficult to compute, we can still do asymptotic testing.
We know the asymptotics of Pn∇`θ = 1

n

∑n
i=1∇`θ(Xi) under Pθ. That is,

√
n (Pn∇`θ)

d→
Pθ
N (0, Iθ).

Thus, for point nulls H0 : θ = θ0,

n (Pn∇`θ0)T I−1
θ0

(Pn∇`θ0)
d→
H0

χ2
d.

Naturally, the Rao test rejection rule

n (Pn∇`θ0)T I−1
θ0

(Pn∇`θ0) > U2
d,α

has asymptotic level α.

Remark

• There exist strong connections between good tests and notions of optimality in estimation.
We will explore this more later.

• Analogues of Rao and Generalized Likelihood Ratio tests exist for nuisance parameters and
composite nulls, but they are similar to the extension of the Wald test and so will not be
covered here.
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