
Stats 300b: Theory of Statistics Winter 2018

Lecture 5 – January 23

Lecturer: John Duchi Scribe: Zijun GAO

� Warning: these notes may contain factual errors

Reading:

• ELST (Lehmann) 3.1, 3.2, 4.1.

• TSH (Lehmann, Romano) 12.4.

Outline:

1. Efficiency of estimators

2. Testing

(a) Confidence sets

(b) Likelihood-ratios

Notation: In the lecture note, we use Iθ to denote the Fisher information with regard to param-
eter θ. Particularly, we let

Iθ = E
[
∇`θ∇`Tθ

]
= −E

[
∇2`θ

]
.

Recap: In the last class, we talked about asymptotic normality. Particularly, we have the follow-
ing theorem with regard to MLE.

Theorem 1 (Asymptotic normality of MLE). If a family of distributions {Pθ} are “nice”, and let
θ̂n be the MLE, then

√
n(θ̂n − θ)

d−→
θ

N(0, I−1
θ ).

Example 1 (Exponential family). Consider exponential family with densities and moment gener-
ating functions

pθ(x) = exp{θ>T (x)−A(θ)− log(k(x))}, A(θ) = log

(∫
exp{θ>T (x)}dµ(x)

)
.

Then for either moment estimators or MLE, we have

√
n(θ̂n − θ)

d−→
θ

N(0, (∇2A(θ))−1).

Remark In fact, when the curvature of the likelihood function is large, the estimation is usually
easier.
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1 Efficiency of estimators

1.1 Efficiency of estimators

Note: we do not introduce the rigorous version of efficiency of estimators here. We will discuss it
at the end of the term.

Definition 1.1 (Efficiency). An estimator Tn for θ is efficient in model {Pθ}θ∈Θ if

√
n(Tn − θ)

d−→
θ

N(0, I−1
θ ).

Example 2 (Gaussian sample mean). Consider a family of Gaussian distributions {N(θ, 1)}θ∈R
and the sample mean estimator Tn = X̄, then we have

√
n(Tn − θ)

d−→
θ

N(0, 1).

Note that Iθ = 1, therefore, Tn is efficient in model {N(θ, 1)}θ∈R.

Example 3 (Poisson). Consider a family of Poisson distributions {Poi(λ)}λ∈R+, where

Pλ(x) =
λx

x!
exp{−λ} = exp{x log(λ)− λ− log(x! )} = exp{x · θ − exp{θ} − log(x! )}.

where θ = log(λ). We then have the following quantities

A(θ) = exp{θ}, Ȧ(θ) = exp{θ}, Ä(θ) = exp{θ}.

Consider the moment estimator Tn = log(X̄), and we have

√
n(Tn − θ)

d−→
θ

N(0, exp{−θ}).

Therefore, Tn is efficient in model {Poi(λ)}λ∈R+.

1.2 Asymptotic relative efficiency (ARE)

Definition 1.2 (Asymptotic relative efficiency (ARE)). Let θ̂n and Tn be estimators of parameter
θ ∈ R. Assume that √

n(θ̂n − θ)
d−→
θ

N(0, σ2(θ)).

Let m(n)→∞ such that
√
n(Tm(n) − θ)

d−→
θ

N(0, σ2(θ)).

The asymptotic relative efficiency of θ̂n with respect to Tn is

lim
n→∞

inf
m(n)

n
.

We have several interpretations of the definition of ARE. For simplicity, in explanations we
assume that ARE = limn→∞m(n)/n exists and equals some constant c.

• Sample size: if c ≥ 1, then Tn requires c ·n samples compared to n samples to get an estimate
of the same ”quality” as θ̂n.
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• Confidence interval: we want 1− α confidence intervals Iα for θ such that

P (θ ∈ Iα) −→ α ∈ (0, 1).

Let z1−α/2 satisfy
P
(
|Z|≥ z1−α/2

)
= α,

where Z ∼ N(0, 1). Then the valid confidence intervals of θ̂n and Tn are:

Cθ̂n :

(
θ̂n − z1−α/2

√
σ2(θ)

n
, θ̂n + z1−α/2

√
σ2(θ)

n

)
,

CTn :

(
Tn − z1−α/2

√
c · σ2(θ)

n
, Tn + z1−α/2

√
c · σ2(θ)

n

)
.

We compare the lengths of the intervals

length(CTn)

length(C(θ̂n))
=
√
c.

Similar to the explanation using confidence interval, we have the following proposition regarding
variances of estimators.

Proposition 2 (Asymptotic variances). Suppose θ̂n and Tn are estimators of θ such that

√
n(θ̂n − θ)

d−→
θ

N(0, σ2(θ)),

√
n(Tn − θ)

d−→
θ

N(0, τ2(θ)).

Then the ARE of θ̂n with respect to Tn is σ2(θ)/τ2(θ).

Proof Let m(n) = dn · τ2/σ2e. Then

√
n
(
Tm(n) − θ

)
=

√
n

m(n)︸ ︷︷ ︸
→σ(θ)/τ(θ)

·
√
m(n) ·

(
Tm(n) − θ

)︸ ︷︷ ︸
d−→
θ

N(0,τ2(θ))

d−→ N(0, σ2(θ)).

Thus, ARE is m(n)/n = τ2(θ)/σ2(θ).

1.3 Super-efficiency

Definition 1.3 (Super-efficiency). Let σ2(θ) = I−1
θ , Tn and θ̂n be estimators of parameter θ such

that √
n (Tn − θ)

d→
θ
N
(
0, τ2(θ)

)
,

√
n
(
θ̂n − θ

)
d→
θ
N
(
0, σ2(θ)

)
,

where
τ2(θ) ≤ σ2(θ), for all θ ∈ Θ, τ2(θ) > σ2(θ), for some θ ∈ Θ.

Then we say that Tn is super-efficient.
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We are interested in two questions:

1. Does super-efficient estimator exist?

2. If there are super-efficient estimators, are they good?

The answer to the first question is affirmative.

Example 4 (Hodge’s estimator for Gaussian mean). For Xi
iid∼ N (θ, 1) and θ̂n = 1

n

∑n
i=1Xi. Let

Tn :=

θ̂n,
∣∣∣θ̂n∣∣∣ ≥ n−1/4

0,
∣∣∣θ̂n∣∣∣ < n−1/4

.

We show that Tn is super-efficient.

• If θ = 0, then

P0

(√
n Tn = 0

)
= P0(|θ̂n|< n−1/4) = P0(|

√
n θ̂n︸ ︷︷ ︸

N(0,1)

|< n−1/4)→ 1 as n→∞,

which gives us that
√
n Tn

d→
0

0.

• If θ 6= 0, then

√
n (Tn − θ) =

√
n
(
θ̂n−θ

)
︸ ︷︷ ︸

d→N(0,1)

1{|θ̂n|≥n−1/4} +
√
n (0− θ) 1{|θ̂n|<n−1/4}

d→ N (0, 1) ,

where we use 1{|θ̂n|≥n−1/4} → 1 a.s. Then we have
√
n (Tn − θ)

d→
θ
N (0, 1) , θ 6= 0.

Remark For the second question, we show in homework that the Hodge’s estimator is unsatis-
factory in some sense.

2 Testing and Confidence Sets

Scientific method Scientific method is of following procedures:

1. Propose a hypothesis;

2. Develop experiments;

3. Observe data that would invalidate the hypothesis;

4. Reject the hypothesis or the hypothesis remains consistent with the observed data.

Remark Scientific hypotheses are never proven “true”. Prevailing hypotheses are held until
they are falsified by new observations
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2.1 Confidence Sets

In many situations we have
√
n(θ̂n − θ0)

d→
θ0

N(0,Σ).

Suppose we would like to make the following claim about the parameter θ0: “with reasonably high
confidence, θ0 ∈ Cn”, where Cn ⊆ Rd is some set.

Example 5. If
√
n(θ̂n − θ0)

d−→
θ0

N(0, I−1
θ0

), Iθ is invertible and continuous in θ. Let

Cn,γ := {θ ∈ Rd : n(θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ γ}.

For θ = θ0, let Z ∼ N(0, I−1
θ0

), W ∼ N(0, Id), we have

n(θ0 − θ̂n)T Iθ̂n(θ0 − θ̂n) = (
√
n(θ̂n − θ0))T (Iθ0 + oP (1))

√
n(θ̂n − θ0)

= (
√
n(θ̂n − θ0)︸ ︷︷ ︸
d→
θ0

N(0,I−1
θ0

)

)T Iθ0(
√
n(θ̂n − θ0)) + oP (1)

d→
θ0
ZT Iθ0Z

d≡ ‖W‖22
d≡ χ2

d.

We use the continuous mapping theorem and Slutsky’s theorem in the proof. Then implied by the
convergence according to distribution, we have

Pθ0(θ0 ∈ Cn,γ) = Pθ0((θ0 − θ̂n)T Iθ̂n(θn − θ̂n) ≤ γ

n
)

→ P(‖W‖22 ≤ γ) = P(χ2
d ≤ γ).

By choosing a proper threshold γ, we obtain a confidence set of θ̂n with confidence level α.

2.2 Testing: Dual Problem to Confidence Sets

The typical approach of hypothesis testing is the following: can we reject some type of null hypoth-
esis, that is, conjecture some model Pθ0 to be “true”?

Definition 2.1 (Testing). We hope for results like

Pθ0(data at least as “extreme” as what we got) ≤ α.

It’s questionable whether this is even a reasonable thing to do, since this is a ill-formed definition
– “extreme” is vague. One might also take philosophical issue with this approach, since the only
conclusions that result from it are negative statements – “this null hypothesis doesn’t explain the
world.” While this may be troubling, it’s worthwhile to note that this is also the nature of the
scientific method.

Definition 2.2 (Ill-formed definition: p-values). Let H0 : {Pθ : θ ∈ Θ0}. The p-value associated
with a sample X1, . . . , Xn is defined to be

sup
θ∈Θ0

Pθ(data as extreme as X1, . . . , Xn observed).
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Example 6 (Gaussian sample mean). Let H0 : Xi
iid∼ N(0, 1). The standard p-value is given by

P0(|Z̄|> |θ̂n|),

where the expectation is taken over Zi
iid∼ N(0, 1) (and here θ̂n = 1

n

∑n
i=1Xi is treated as a fixed

value).

2.3 Likelihood-ratio Test

Likelihood-ratio test is the starting point for understanding “asymptotics” of testing.

2.3.1 Neyman-Pearson Test

Recall the classic Neymann-Pearson test with simple null and alternative:

H0 : p0 ↔ H1 : p1

The test that is the “best” (maximizes power at all levels) is the likelihood-ratio test. Let x be
sample values and

T (x) = log

(
dP1(x)

dP0(x)

)
,

the most powerful test is given by
accept H1/reject H0, T (x) > t,

accept H0/reject H1, T (x) < t,

randomize/balance, T (x) = t,

where t ∈ R is determined by the confidence level.

2.3.2 Generalized Likelihood-ratio Tests

We now generalize the likelihood-ratio test to composite null and alternative. Goal: to test

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ,

where usually Θ0 ⊆ Θ. Define

T (x) = log

(
supθ∈Θ p(x, θ)

supθ∈Θ0
p(x, θ)

)
= log

(
p(x, θ̂MLE)

supθ∈Θ0
p(x, θ)

)
.

The Generalized likelihood-ratio test follows similar rules in Neyman-Pearson test.

To determine the threshold t given some confidence level, we have the following proposition.
Suppose that {Pθ}θ∈Θ is nice enough that the MLE is asymptotically normal, and assume the
Lipschitz-continuous condition of ∇2`θ0∣∣∣∣∣∣∇2`θ(x)−∇2`θ′(x)

∣∣∣∣∣∣
op
≤M(x)

∥∥θ − θ′∥∥ ,
where Eθ

[
M2(X)

]
<∞. Then we have the following asymptotic result.
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Proposition 1 (Wilk’s Theorem). Let Θ0 = {θ0} be a point null, Θ ⊂ Rd. Let

Ln(x, θ) =
n∑
i=1

`θ(xi) =
n∑
i=1

log pθ(xi), Tn(x) = Ln(x, θ̂MLE)− Ln(x, θ0).

Then
2 Tn(X)

d−→
θ0

χ2
d,

where X = (X1, . . . , Xn) and Xi
iid∼ Pθ0.

Many thanks to the great jobs of the 300B scribers last winter!
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