Stats 300b: Theory of Statistics Winter 2018

Lecture 5 — January 23

Lecturer: John Duchi Scribe: Zigun GAO

@ Warning: these notes may contain factual errors

Reading:
e ELST (Lehmann) 3.1, 3.2, 4.1.

e TSH (Lehmann, Romano) 12.4.

Outline:
1. Efficiency of estimators
2. Testing
(a) Confidence sets

(b) Likelihood-ratios

Notation: In the lecture note, we use Iy to denote the Fisher information with regard to param-
eter 6. Particularly, we let

Iy =E [V6eVI]] = —E [VZ¢] .

Recap: In the last class, we talked about asymptotic normality. Particularly, we have the follow-
ing theorem with regard to MLE.

Theorem 1 (Asymptotic normality of MLE). If a family of distributions {Pp} are “nice”, and let
0,, be the MLE, then

A~

(b, — 0) % N(0, I;71).

Example 1 (Exponential family). Consider exponential family with densities and moment gener-
ating functions

pale) = xp{0 7o) ~ A(0) ~ og((2))}, A®) =1og ( [ exp{0"T(aauts) ).
Then for either moment estimators or MLE, we have
Vil = 0) <5 N(0, (V2 A(0)) ™).

Remark In fact, when the curvature of the likelihood function is large, the estimation is usually
easier.



1 Efficiency of estimators

1.1 Efficiency of estimators

Note: we do not introduce the rigorous version of efficiency of estimators here. We will discuss it
at the end of the term.

Definition 1.1 (Efficiency). An estimator T,, for 0 is efficient in model {Pg}oco if
(T, — 0) % N(0, I;71).

Example 2 (Gaussian sample mean). Consider a family of Gaussian distributions {N(6,1)}ger
and the sample mean estimator T,, = X, then we have

(T, — 0) % N(0, 1).

Note that Iy = 1, therefore, T,, is efficient in model {N(0,1)}per.

Example 3 (Poisson). Consider a family of Poisson distributions {Poi(\)}\er+, where

x

Py(z) = % exp{—A} = exp{zlog(\) — A — log(x!)} = exp{x - 0 — exp{O} — log(z!)}.
where 0 = log(\). We then have the following quantities
A(0) = exp{f}, A(0) =exp{h}, A(h) = exp{h}.
Consider the moment estimator T,, = log(X), and we have
V(T = 0) 5 N(0, exp{~6}).
Therefore, T,, is efficient in model { Poi(\)} \cr+-

1.2 Asymptotic relative efficiency (ARE)

Definition 1.2 (Asymptotic relative efficiency (ARE)). Let 6,, and T, be estimators of parameter
0 € R. Assume that A
(b, — 0) % N(0, 52(6)).

Let m(n) — oo such that
Vi(Ty = 0) 5 N(0,0%(6).

The asymptotic relative efficiency of 0,, with respect to T, is

lim inf m(n) .
n—oo n

We have several interpretations of the definition of ARE. For simplicity, in explanations we
assume that ARE = lim,,_,o, m(n)/n exists and equals some constant c.

e Sample size: if ¢ > 1, then T}, requires ¢-n samples compared to n samples to get an estimate
of the same ”quality” as 6,,.



e Confidence interval: we want 1 — « confidence intervals I, for 8 such that
PO el,) — ac(0,1).

Let 21_q /o satisty
P (|Z’Z Zl—a/2) = Q,

where Z ~ N(0,1). Then the valid confidence intervals of 0, and T, are:

« [02(0) - [o2(0
Cén : <0n — Zl—a/Z T(L)’0n+21_a/2 "E )) y
c-o02(0 c-o02(0
Cr, : (Tn — Z1—a/2\/ n(),Tn + 21-a/2\/ n()> .

We compare the lengths of the intervals

length(Cr,) .
length(C(6,,)) = Ve

Similar to the explanation using confidence interval, we have the following proposition regarding
variances of estimators.

Proposition 2 (Asymptotic variances). Suppose 6, and T,, are estimators of 0 such that

Vil = 6) %5 N(0,0*(9)),

V(T = 0) % N(0,7%(6).
Then the ARE of 0, with respect to T, is 02(6)/72(0).
Proof Let m(n) = [n-7%/0?]. Then

\/ﬁ (Tm(n) — 9) = W m(n) (Tm(n) — 9) — N(O,U (9))
e AT
Thus, ARE is m(n)/n = 72(0)/o2(0). O

1.3 Super-efficiency

Definition 1.3 (Super-efficiency). Let 0%(0) = 19_1, T,, and 0, be estimators of parameter 6 such
that

Vi (T, = 6) 5 N (0,7(9))
Jn (én _ 9) % N (0,02(6)) ,

where
72(0) < 02(0), for all @ € ©, 7%(0) > 2(0), for some 6 € O.

Then we say that T, is super-efficient.



We are interested in two questions:
1. Does super-efficient estimator exist?
2. If there are super-efficient estimators, are they good?
The answer to the first question is affirmative.
iid

Example 4 (Hodge’s estimator for Gaussian mean). For X; ~ N (0,1) and 6, = * Yo, Xi. Let

éna én > n~1/4
0, én <n U4
We show that T,, is super-efficient.
e [f0 =0, then
Py (Vn Tn = 0) = Po(|0n]< n™4) = Py(|v/n n|< n™ V) = 1 as n — oo,
——
N(0,1)
which gives us that \/n T), %) 0.
e If0#£0, then
5 d
VT, —0) = v (en—9)1{|én|2n_1/4} V(0= 0) 115 1 my = N (01),
—_——
4N(0,1)

where we use 1{ >n-1/1} ™ 1 a.s. Then we have /n (T, —0) % N(0,1), 6 #0.

On

Remark  For the second question, we show in homework that the Hodge’s estimator is unsatis-
factory in some sense.

2 Testing and Confidence Sets

Scientific method Scientific method is of following procedures:
1. Propose a hypothesis;
2. Develop experiments;
3. Observe data that would invalidate the hypothesis;
4. Reject the hypothesis or the hypothesis remains consistent with the observed data.

Remark Scientific hypotheses are never proven “true”. Prevailing hypotheses are held until
they are falsified by new observations



2.1 Confidence Sets

In many situations we have
V(6. — 60) £ N(0, Z).

0

Suppose we would like to make the following claim about the parameter 0y: “with reasonably high
confidence, 6y € C,,”, where C,, C R is some set.

Example 5. If \/n(0,, — 6p) 9i> N(O, 19701), Iy is invertible and continuous in 0. Let
0

Cry ={0 €RY: (6 — 0,)"T; (6 —6,) <}
For 0 =0y, let Z ~ N(O,Igol), W ~ N(0, 1), we have

n(0o — 0n)"I; (60 — 0n) = (V(bn — 00))" (In, + 0p(1))v/n(6 — 60)
= (v/n(bn — 00))" To, (v (6 — 60)) + 0p(1)

N—————’

S NI

4

d d
205, Z = ||W]5 = X3
0

We use the continuous mapping theorem and Slutsky’s theorem in the proof. Then implied by the
convergence according to distribution, we have

~ ~

Pyy (00 € Cny) = Py (60 — 60) I (6 — On) <
= P(|W5 <7) =P(3 <)

)

3=

By choosing a proper threshold v, we obtain a confidence set of 6,, with confidence level .

2.2 Testing: Dual Problem to Confidence Sets

The typical approach of hypothesis testing is the following: can we reject some type of null hypoth-
esis, that is, conjecture some model Py, to be “true”?

Definition 2.1 (Testing). We hope for results like
Py, (data at least as “extreme” as what we got) < a.

It’s questionable whether this is even a reasonable thing to do, since this is a ill-formed definition
— “extreme” is vague. One might also take philosophical issue with this approach, since the only
conclusions that result from it are negative statements — “this null hypothesis doesn’t explain the
world.” While this may be troubling, it’s worthwhile to note that this is also the nature of the
scientific method.

Definition 2.2 (Ill-formed definition: p-values). Let Hy : {Pg : 6 € ©g}. The p-value associated
with a sample X1, ..., X, is defined to be

sup Py(data as extreme as X1,..., X, observed).
[USSH



Example 6 (Gaussian sample mean). Let Hy : X i N(0,1). The standard p-value is given by

Po(|Z|> [6nl),

where the expectation is taken over Z; S N(0,1) (and here 0, = LS 1 X, is treated as a fived
value).

2.3 Likelihood-ratio Test

Likelihood-ratio test is the starting point for understanding “asymptotics” of testing.
2.3.1 Neyman-Pearson Test
Recall the classic Neymann-Pearson test with simple null and alternative:

Ho:po < Hi:p

The test that is the “best” (maximizes power at all levels) is the likelihood-ratio test. Let x be

sample values and
B dP;(x)
T(xz) = log (dIP’O(x)> ,

accept Hy/reject Hy, T(x)
accept Ho/reject Hy, T(x)

randomize/balance,  T'(x)

the most powerful test is given by

)

>t
<t
t

9

where t € R is determined by the confidence level.

2.3.2 Generalized Likelihood-ratio Tests

We now generalize the likelihood-ratio test to composite null and alternative. Goal: to test
Hy:0€0y «& H:0€0,

where usually ©9 C ©. Define

T(z) = log (Sup@é@p(wﬁ)> = log (p(x’éMLE)> .

Suppeo, P(Z,0) Supgeo, P(7,0)

The Generalized likelihood-ratio test follows similar rules in Neyman-Pearson test.
To determine the threshold ¢ given some confidence level, we have the following proposition.

Suppose that {Py}gco is nice enough that the MLE is asymptotically normal, and assume the
Lipschitz-continuous condition of VQEQO

IV2ts(@) = V2o )], < M(a) [|6 - &].

where Eg [M 2 (X)] < 00. Then we have the following asymptotic result.



Proposition 1 (Wilk’s Theorem). Let ©g = {6} be a point null, © C R?. Let
Ln(2,0) = lo(x;) = > logpe(x:), Tn(x) = Ln(z,0n18) — Ln(x,00).
i=1 i=1

Then

where X = (X1,...,X,) and X; N Py, -

Many thanks to the great jobs of the 300B scribers last winter!



