Reading: VDV Chapter 4; TPE Chapter 2.5

Outline of lecture 4:

1. Moment method
(a) Implicit function theorems
(b) Exponential family models
2. Some thoughts on Fisher information
(a) Information inequality (Cramer-Rao)
(b) The real actual information inequality

1 Recap

1.1 Recap of Taylor expansions

For a vector-valued function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, we have

$$
f(y)=f(x)+D f(x)(y-x)+O(\|y-x\|) .
$$

We can also write

$$
f(y)=f(x)+(D f(x)+E(x, y))(y-x),
$$

where $E(x, y)=o(1)$.
If $D f(x)$ is L-Lipchitz, we have that

$$
E(x, y) \leq \frac{L}{2}\|y-x\| .
$$

1.2 Recap of MLE

We denote by $\hat{\theta}_{n}$ the MLE for $\left\{P_{\theta}\right\}$, then (here, $\theta \in \Theta \subset \mathbb{R}^{d}$)

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} N\left(0, I_{\theta}^{-1}\right),
$$

where I_{θ} is the Fisher information matrix.

2 Moment method

Let X_{1}, \cdots, X_{n} be a sample of random variable X from a distribution P_{θ} that depends on a parameter θ. Suppose X takes values in \mathcal{X}, and that $f: \mathcal{X} \rightarrow \mathbb{R}^{d}$ is a vector-valued function such that $P_{\theta}\|f\|^{2}<\infty$, we denote by

$$
e(\theta)=\mathbb{E}_{P_{\theta}}[f(X)]
$$

the expectation of $f(X)$ under P_{θ}.
The idea of moment method is to estimate θ by

$$
e(\hat{\theta})=\mathbb{P}_{n} f(X),
$$

where

$$
\mathbb{P}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) .
$$

The starting point of moment method is central limit theorem. For function f, we have that

$$
\sqrt{n}\left(\mathbb{P}_{n} f-\mathbb{P}_{\theta} f\right) \xrightarrow{d} N(0, \Sigma),
$$

where

$$
\Sigma=\operatorname{Cov}(f) .
$$

Suppose e is "really nice", we have that

$$
\hat{e}=e^{-1}\left(\mathbb{P}_{n} f\right) .
$$

We denote by

$$
e^{-1}(t)=\frac{\partial}{\partial t}\left(e^{-1}\right)(t),
$$

and delta method gives that

$$
\begin{aligned}
\sqrt{n}\left(e^{-1}\left(\mathbb{P}_{n} f-\theta\right)\right. & =\sqrt{n}\left(e^{-1}\left(\mathbb{P}_{n} f\right)-e^{-1}\left(\mathbb{P}_{\theta} f\right)\right) \\
& \xrightarrow{d} e^{-1}\left(P_{\theta} f\right) N\left(0, \operatorname{Cov}_{\theta} f\right) \\
& =N\left(0,\left(e^{-1}\right)\left(P_{\theta} f\right) \operatorname{Cov}_{\theta} f\left(e^{-1}\right)\left(P_{\theta} f\right)^{T}\right) .
\end{aligned}
$$

2.1 Inverse function theorem

Lemma 1 (VDV Lemmas 4.2-4.3). Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a vector-valued function. We assume that F is continuously differentiable in a neighborhood of $\theta \in \mathbb{R}^{d}$, and that $F^{\prime}(\theta) \in \mathbb{R}^{d \times d}$ is invertible for t near $F(\theta)$. Then we have that $F^{-1}(t)$ is well-defined and that

$$
\left(F^{-1}\right)^{\prime}(t)=\frac{\partial}{\partial t} F^{-1}(t)=\left(F^{\prime}\left(F^{-1}(t)\right)\right)^{-1}
$$

2.2 Asymptotic normality via inverse function theorem

In this part, we assume that $P_{\theta_{0}} f=0$.
Theorem 2. Let $e(\theta)=P_{\theta} f$ be one-to-one on an open set $\Theta \subset \mathbb{R}^{d}$ and continuously differentiable at $\theta_{0} \in \Theta$. Assume $e^{\prime}\left(\theta_{0}\right) \in \mathbb{R}^{d \times d}$ is non-singular. Assume $P_{\theta_{0}}\|f\|^{2}<\infty, X_{i} \stackrel{\text { i.i.d. }}{\sim} P_{\theta_{0}}$, then $\hat{\theta}_{n}=e^{-1}\left(P_{n} f\right)$ exists eventually, and

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d, P_{\theta_{0}}} N\left(0, e^{\prime}\left(\theta_{0}\right)^{-1} P_{\theta_{0}} f f^{T}\left(e^{\prime}\left(\theta_{0}\right)^{-1}\right)^{T}\right) .
$$

Proof We have that

$$
P_{n} f \xrightarrow{\text { a.s. }} P_{\theta_{0}} f=e\left(\theta_{0}\right) .
$$

Eventually, $\hat{\theta}=e^{-1}\left(P_{n} f\right)$ exists, and in this neighborhood, e^{-1} is differentiable with

$$
\left(e^{-1}\right)^{\prime}\left(e\left(\theta_{0}\right)\right)=\left(e^{\prime}\left(e^{-1}\left(e\left(\theta_{0}\right)\right)\right)\right)^{-1}=e^{\prime}\left(\theta_{0}\right)^{-1} .
$$

3 Exponential family models

Definition 3.1. $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ is a regular exponential family if there is a sufficient statistic $T: \mathcal{X} \rightarrow \mathbb{R}^{d}$ such that P_{θ} has density

$$
P_{\theta}=\exp \left(\theta^{T} T(x)-A(\theta)\right)
$$

with respect to μ, where $A(\theta)=\log \int e^{\theta^{T} T(x)} d \mu(x)$.
Differentiability of $A(\theta) \quad A(\theta)$ is convex in θ and C^{∞} in its domain with

$$
\frac{\partial^{k} e^{A(\theta)}}{\partial \theta_{1}^{\alpha_{1}} \cdots \partial \theta_{d}^{\alpha_{d}}}=\int T_{1}(x)^{\alpha_{1}} \cdots T_{d}(x)^{\alpha_{d}} e^{\theta^{T} T(x)} d \mu(x)
$$

for $\alpha \in \mathbb{N}^{d}, \sum_{j=1}^{d} \alpha_{j}=k$.
Therefore,

$$
\begin{aligned}
\nabla A(\theta) & =\nabla \log e^{A(\theta)} \\
& =\frac{1}{e^{A(\theta)}} \int T(x) e^{\theta^{T} T(x)} d \mu(x) \\
& =\mathbb{E}_{\theta}[T(x)] \\
\nabla^{2} A(\theta) & =\int T T^{T} d P_{\theta} \\
& =\left(\int T d P_{\theta}\right)\left(\int T d P_{\theta}\right)^{T} \\
& =\operatorname{Cov}_{\theta}(T) .
\end{aligned}
$$

Applying inverse function theorem We have

$$
\begin{gathered}
e(\theta)=\mathbb{E}_{\theta}[T(x)], \\
e^{\prime}(\theta)=\operatorname{Cov}_{\theta}[T(x)] .
\end{gathered}
$$

Assuming $\operatorname{Cov}_{\theta}[T(x)] \succ 0$, the solution $\hat{\theta}_{n}$ to

$$
\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)=e(\theta)=\mathbb{E}_{\theta}[T(x)]
$$

eventually exists, and

$$
\begin{aligned}
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{n}\right) & \left.\xrightarrow{d} N\left(0,\left(e^{\prime}\left(\theta_{0}\right)\right)^{-1} \operatorname{Cov}_{\theta_{0}}(T(x))\left(e^{\prime}\left(\theta_{0}\right)\right)^{-1}\right)^{T}\right) \\
& =N\left(0, \operatorname{Cov}_{\theta_{0}}(T)^{-1}\right) \\
& =N\left(0, \mathbb{E}_{\theta_{0}}\left(i_{\theta} i_{\theta}^{T}\right)\right)=N\left(0, I_{\theta_{0}}^{-1}\right) .
\end{aligned}
$$

Now we show MLE estimator equals moment estimator for exponential families. MLE maximizes $\theta^{T} P_{n} T(x)-A(\theta)$. As

$$
\nabla_{\theta}\left(\theta^{T} P_{n} T(x)-A(\theta)\right)=P_{n} T(x)-e(\theta)
$$

we have that MLE estimator $\hat{\theta}$ is determined by

$$
P_{n} T(x)=e(\hat{\theta}) .
$$

4 Fisher information and the biggest con in the history of statistics

Recall the Fisher information $I_{\theta}=\mathbb{E}_{\theta}\left[\nabla l_{\theta}\left(\nabla l_{\theta}\right)^{T}\right]$. Given enough smoothness,

$$
I_{\theta}=-\mathbb{E}\left[\nabla^{2} l_{\theta}\right] .
$$

It seems like larger I_{θ} will lead to easier estimation.

4.1 Multi-dimensional information inequalities

The idea is to lower bound the variance of different procedures. Consider $\delta: \mathcal{X} \rightarrow \mathbb{R}$ and $\Psi: \mathcal{X} \rightarrow$ \mathbb{R}^{d}. Suppose that $\mathbb{E}_{\theta}[\Psi]=0$. We define $\gamma=\left[\operatorname{Cov}\left(\Psi_{i}, \delta\right)\right]_{i=1}^{d} \in \mathbb{R}^{d}, C=\operatorname{Cov}_{\theta}(\Psi)=\mathbb{E}_{\theta}\left[\Psi \Psi^{T}\right] \in$ $\mathbb{R}^{d \times d}$.

Lemma 3. We have that

$$
\operatorname{Var}(\delta) \geq \gamma^{T} C^{-1} \gamma
$$

Proof Consider

$$
\begin{gathered}
\operatorname{Cov}\left(\delta, v^{T} \Psi\right)=\mathbb{E}\left[(\delta-\mathbb{E} \delta)\left(v^{T} \Psi\right)\right] \leq \sqrt{\operatorname{Var}(\delta)} \sqrt{\operatorname{Var}\left(v^{T} \Psi\right)} . \\
\operatorname{Cov}\left(\delta, v^{T} \Psi\right)=\sum_{j=1}^{d} v_{j} \operatorname{Cov}\left(\delta, \Psi_{j}\right)=\sum_{j=1}^{d} v_{j} \gamma_{j}=v^{T} \gamma . \\
\operatorname{Var}\left(v^{T} \Psi\right)=v^{T} C v .
\end{gathered}
$$

We have

$$
\frac{\left(v^{T} \gamma\right)^{2}}{v^{T} C v} \leq \operatorname{Var}(\delta)
$$

Now we choose v to optimize the lower bound.
Fact If $A \succ 0$, then

$$
\sup _{v \neq 0} \frac{\left(v^{T} u\right)^{2}}{v^{T} A v}=u^{T} A^{-1} u
$$

Proof of fact

$$
\begin{gathered}
v^{T} u=\left(A^{\frac{1}{2}} v\right)^{T}\left(A^{-\frac{1}{2}} u\right), \\
v^{T} A v=\left\|A^{\frac{1}{2}} v\right\|_{2}^{2} . \\
\frac{\left(v^{T} u\right)^{2}}{v^{T} A v}=\frac{\left[\left(A^{\frac{1}{2}} v\right)^{T}\left(A^{-\frac{1}{2}} u\right)\right]^{2}}{\left\|A^{\frac{1}{2}} v\right\|_{2}^{2}} \\
\leq\left\|A^{-\frac{1}{2}} u\right\|_{2}^{2}=u^{T} A^{-1} u .
\end{gathered}
$$

The equality holds if $v=A^{-1} u$.
Choosing $v=C^{-1} \gamma$, we gain from the fact that

$$
\operatorname{Var}(\delta) \geq \gamma^{T} C^{-1} \gamma
$$

Theorem 4 (Cramer-Rao). Let $g(\theta)=\mathbb{E}_{\theta}[\delta] \in \mathbb{R}$ and $I_{\theta}=\mathbb{E}_{\theta}\left[\nabla l_{\theta}\left(\nabla l_{\theta}\right)^{T}\right] \succ 0$, then

$$
\operatorname{Var}_{\theta}(\delta) \geq \nabla g(\theta)^{T} I_{\theta}^{-1} \nabla g(\theta) .
$$

Proof Set $\Psi(x)=\nabla_{\theta} l_{\theta}(x)$, we have that $\mathbb{E}_{\theta}[\Psi]=0$, and that

$$
\begin{aligned}
\mathbb{E}[(\delta-g(\theta)) \Psi] & =\mathbb{E}[\delta \Psi] \\
& =\mathbb{E}\left[\delta \nabla l_{\theta}\right] \\
& =\mathbb{E}\left[\delta \frac{\nabla p_{\theta}}{p_{\theta}}\right] \\
& =\int \delta \nabla p_{\theta} d \mu(x) .
\end{aligned}
$$

Under good regularity conditions, we have that

$$
\mathbb{E}[(\delta-g(\theta)) \Psi]=\nabla \int \delta(x) p_{\theta}(x) d \mu(x)=\nabla g(\theta) .
$$

We take

$$
\gamma=\nabla g(\theta), C=I_{\theta}
$$

to get the desired result.

Corollary 5 (Cramer-Rao). If $\hat{\theta}: \mathcal{X} \rightarrow \Theta$ is unbiased, then

$$
\mathbb{E}\left[\|\hat{\theta}-\theta\|_{2}^{2}\right] \geq \operatorname{tr}\left(I_{\theta}^{-1}\right)
$$

and

$$
\mathbb{E}[(\hat{\theta}-\theta)(\hat{\theta}-\theta)] \succeq I_{\theta}^{-1} .
$$

Proof Take

$$
\begin{array}{r}
g(\theta)=v^{T} \theta \\
\delta=v^{T} \hat{\theta}(X) .
\end{array}
$$

Applying the Cramer-Rao theorem,

$$
\mathbb{E}\left[\left(v^{T}(\hat{\theta}-\theta)\right)^{2}\right] \geq v^{T} I_{\theta}^{-1} v
$$

and

$$
\mathbb{E}\left[\left(v^{T}(\hat{\theta}-\theta)\right)^{2}\right]=\mathbb{E}\left[\operatorname{tr}\left((\hat{\theta}-\theta)(\hat{\theta}-\theta)^{T} v v^{T}\right)\right]=v^{T} \operatorname{Cov}(\hat{\theta}) v .
$$

Why this is a con?

1. Proof does not give much intuition.
2. There are tons of great biased estimators.

We have that

$$
\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]=(\mathbb{E}(\hat{\theta}-\theta))^{2}+\operatorname{Var}(\hat{\theta}) .
$$

For Gaussian mean estimation, let $X \sim N\left(\mu, I_{n}\right)$, then the James-Stein estimator $\hat{\mu}=(1-$ $r(||X||)) X$ is biased, but has lower MSE when $n \geq 3$.

For ridge regression, $y=X \beta+\epsilon$, then the ridge regression estimator is $\hat{\beta}_{\lambda}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y$, and it has lower MSE than $\hat{\beta}_{O L S}=\hat{\beta}_{0}$ if $X^{T} X$ is ill-conditioned.

4.2 The real theorem: Le Cam and Hajek's local asymptotic minimax theorem

Fix θ_{0} and let $\Pi_{n, c}$ be uniform distributioon over $\left\{\theta:\left\|\theta-\theta_{0}\right\| \leq \frac{c}{\sqrt{n}}\right\}$. Then for any symmetric, bounded, bowl-shaped L,

$$
\liminf _{C \rightarrow+\infty} \liminf _{n \rightarrow+\infty} \inf _{\hat{\theta}_{n}} \int \mathbb{E}_{\theta}\left[L\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)\right)\right] \Pi_{n, c}(\theta) d \theta \geq \mathbb{E}[L(Z)],
$$

where $Z \sim N\left(0, I_{\theta_{0}}^{-1}\right)$.
Here, $E[L(Z)]$ estimates $Z \sim N\left(0, I_{\theta_{0}}^{-1}\right)$ by 0 . If we let $L(t)=t^{2}, E[L(Z)]=\operatorname{tr}\left(I_{\theta_{0}}^{-1}\right)$.

