
Stats 300b: Theory of Statistics Winter 2018

Lecture 4 – January 18

Lecturer: Yu Bai/John Duchi Scribe: Chenyang Zhong

� Warning: these notes may contain factual errors

Reading: VDV Chapter 4; TPE Chapter 2.5

Outline of lecture 4:

1. Moment method

(a) Implicit function theorems

(b) Exponential family models

2. Some thoughts on Fisher information

(a) Information inequality (Cramer-Rao)

(b) The real actual information inequality

1 Recap

1.1 Recap of Taylor expansions

For a vector-valued function f : Rd → Rd, we have

f(y) = f(x) +Df(x)(y − x) +O(||y − x||).

We can also write
f(y) = f(x) + (Df(x) + E(x, y))(y − x),

where E(x, y) = o(1).
If Df(x) is L-Lipchitz, we have that

E(x, y) ≤ L

2
||y − x||.

1.2 Recap of MLE

We denote by θ̂n the MLE for {Pθ}, then (here, θ ∈ Θ ⊂ Rd)

√
n(θ̂n − θ)

d−→ N(0, I−1
θ ),

where Iθ is the Fisher information matrix.
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2 Moment method

Let X1, · · · , Xn be a sample of random variable X from a distribution Pθ that depends on a
parameter θ. Suppose X takes values in X , and that f : X → Rd is a vector-valued function such
that Pθ||f ||2 <∞, we denote by

e(θ) = EPθ [f(X)]

the expectation of f(X) under Pθ.
The idea of moment method is to estimate θ by

e(θ̂) = Pnf(X),

where

Pnf =
1

n

n∑
i=1

f(Xi).

The starting point of moment method is central limit theorem. For function f , we have that

√
n(Pnf − Pθf)

d−→ N(0,Σ),

where
Σ = Cov(f).

Suppose e is ”really nice”, we have that

ê = e−1(Pnf).

We denote by

˙e−1(t) =
∂

∂t
(e−1)(t),

and delta method gives that
√
n(e−1(Pnf − θ) =

√
n(e−1(Pnf)− e−1(Pθf))

d−→ ˙e−1(Pθf)N(0, Covθf)

= N(0, ( ˙e−1)(Pθf)Covθf( ˙e−1)(Pθf)T ).

2.1 Inverse function theorem

Lemma 1 (VDV Lemmas 4.2-4.3). Let F : Rd → Rd be a vector-valued function. We assume that
F is continuously differentiable in a neighborhood of θ ∈ Rd, and that F ′(θ) ∈ Rd×d is invertible
for t near F (θ). Then we have that F−1(t) is well-defined and that

(F−1)′(t) =
∂

∂t
F−1(t) = (F ′(F−1(t)))−1.

2.2 Asymptotic normality via inverse function theorem

In this part, we assume that Pθ0f = 0.

Theorem 2. Let e(θ) = Pθf be one-to-one on an open set Θ ⊂ Rd and continuously differentiable

at θ0 ∈ Θ. Assume e′(θ0) ∈ Rd×d is non-singular. Assume Pθ0 ||f ||2 < ∞, Xi
i.i.d.∼ Pθ0, then

θ̂n = e−1(Pnf) exists eventually, and

√
n(θ̂n − θ0)

d,Pθ0−−−→ N(0, e′(θ0)−1Pθ0ff
T (e′(θ0)−1)T ).
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Proof We have that
Pnf

a.s.−−→ Pθ0f = e(θ0).

Eventually, θ̂ = e−1(Pnf) exists, and in this neighborhood, e−1 is differentiable with

(e−1)′(e(θ0)) = (e′(e−1(e(θ0))))−1 = e′(θ0)−1.

3 Exponential family models

Definition 3.1. {Pθ}θ∈Θ is a regular exponential family if there is a sufficient statistic T : X → Rd
such that Pθ has density

Pθ = exp(θTT (x)−A(θ))

with respect to µ, where A(θ) = log
∫
eθ
TT (x)dµ(x).

Differentiability of A(θ) A(θ) is convex in θ and C∞ in its domain with

∂keA(θ)

∂θα1
1 · · · ∂θ

αd
d

=

∫
T1(x)α1 · · ·Td(x)αdeθ

TT (x)dµ(x)

for α ∈ Nd,
d∑
j=1

αj = k.

Therefore,

∇A(θ) = ∇ log eA(θ)

=
1

eA(θ)

∫
T (x)eθ

TT (x)dµ(x)

= Eθ[T (x)],

∇2A(θ) =

∫
TT TdPθ

= (

∫
TdPθ)(

∫
TdPθ)

T

= Covθ(T ).

Applying inverse function theorem We have

e(θ) = Eθ[T (x)],

e′(θ) = Covθ[T (x)].

Assuming Covθ[T (x)] � 0, the solution θ̂n to

1

n

n∑
i=1

T (Xi) = e(θ) = Eθ[T (x)]
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eventually exists, and

√
n(θ̂n − θn)

d−→ N(0, (e′(θ0))−1Covθ0(T (x))(e′(θ0))−1)T )

= N(0, Covθ0(T )−1)

= N(0,Eθ0(l̇θ l̇
T
θ )) = N(0, I−1

θ0
).

Now we show MLE estimator equals moment estimator for exponential families. MLE maximizes
θTPnT (x)−A(θ). As

∇θ(θTPnT (x)−A(θ)) = PnT (x)− e(θ),

we have that MLE estimator θ̂ is determined by

PnT (x) = e(θ̂).

4 Fisher information and the biggest con in the history of statis-
tics

Recall the Fisher information Iθ = Eθ[∇lθ(∇lθ)T ]. Given enough smoothness,

Iθ = −E[∇2lθ].

It seems like larger Iθ will lead to easier estimation.

4.1 Multi-dimensional information inequalities

The idea is to lower bound the variance of different procedures. Consider δ : X → R and Ψ : X →
Rd. Suppose that Eθ[Ψ] = 0. We define γ = [Cov(Ψi, δ)]

d
i=1 ∈ Rd, C = Covθ(Ψ) = Eθ[ΨΨT ] ∈

Rd×d.

Lemma 3. We have that
V ar(δ) ≥ γTC−1γ.

Proof Consider

Cov(δ, vTΨ) = E[(δ − Eδ)(vTΨ)] ≤
√
V ar(δ)

√
V ar(vTΨ).

Cov(δ, vTΨ) =
d∑
j=1

vjCov(δ,Ψj) =
d∑
j=1

vjγj = vTγ.

V ar(vTΨ) = vTCv.

We have
(vTγ)2

vTCv
≤ V ar(δ).

Now we choose v to optimize the lower bound.

Fact If A � 0, then

sup
v 6=0

(vTu)2

vTAv
= uTA−1u.
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Proof of fact
vTu = (A

1
2 v)T (A−

1
2u),

vTAv = ||A
1
2 v||22.

(vTu)2

vTAv
=

[(A
1
2 v)T (A−

1
2u)]2

||A
1
2 v||22

≤ ||A−
1
2u||22 = uTA−1u.

The equality holds if v = A−1u.
Choosing v = C−1γ, we gain from the fact that

V ar(δ) ≥ γTC−1γ.

Theorem 4 (Cramer-Rao). Let g(θ) = Eθ[δ] ∈ R and Iθ = Eθ[∇lθ(∇lθ)T ] � 0, then

V arθ(δ) ≥ ∇g(θ)T I−1
θ ∇g(θ).

Proof Set Ψ(x) = ∇θlθ(x), we have that Eθ[Ψ] = 0, and that

E[(δ − g(θ))Ψ] = E[δΨ]

= E[δ∇lθ]

= E[δ
∇pθ
pθ

]

=

∫
δ∇pθdµ(x).

Under good regularity conditions, we have that

E[(δ − g(θ))Ψ] = ∇
∫
δ(x)pθ(x)dµ(x) = ∇g(θ).

We take
γ = ∇g(θ), C = Iθ

to get the desired result.

Corollary 5 (Cramer-Rao). If θ̂ : X → Θ is unbiased, then

E[||θ̂ − θ||22] ≥ tr(I−1
θ )

and
E[(θ̂ − θ)(θ̂ − θ)] � I−1

θ .
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Proof Take
g(θ) = vT θ

δ = vT θ̂(X).

Applying the Cramer-Rao theorem,

E[(vT (θ̂ − θ))2] ≥ vT I−1
θ v

and
E[(vT (θ̂ − θ))2] = E[tr((θ̂ − θ)(θ̂ − θ)T vvT )] = vTCov(θ̂)v.

Why this is a con?

1. Proof does not give much intuition.

2. There are tons of great biased estimators.

We have that
E[(θ̂ − θ)2] = (E(θ̂ − θ))2 + V ar(θ̂).

For Gaussian mean estimation, let X ∼ N(µ, In), then the James-Stein estimator µ̂ = (1 −
r(||X||))X is biased, but has lower MSE when n ≥ 3.

For ridge regression, y = Xβ+ε, then the ridge regression estimator is β̂λ = (XTX+λI)−1XT y,
and it has lower MSE than β̂OLS = β̂0 if XTX is ill-conditioned.

4.2 The real theorem: Le Cam and Hajek’s local asymptotic minimax theorem

Fix θ0 and let Πn,c be uniform distributioon over {θ : ||θ − θ0|| ≤ c√
n
}. Then for any symmetric,

bounded, bowl-shaped L,

lim inf
C→+∞

lim inf
n→+∞

inf
θ̂n

∫
Eθ[L(

√
n(θ̂n − θ))]Πn,c(θ)dθ ≥ E[L(Z)],

where Z ∼ N(0, I−1
θ0

).

Here, E[L(Z)] estimates Z ∼ N(0, I−1
θ0

) by 0. If we let L(t) = t2, E[L(Z)] = tr(I−1
θ0

).
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