Stats 300b: Theory of Statistics

Winter 2018

Lecture 4 – January 18

Lecturer: Yu Bai/John Duchi

Scribe: Chenyang Zhong

Warning: these notes may contain factual errors

Reading: VDV Chapter 4; TPE Chapter 2.5

Outline of lecture 4:

- 1. Moment method
 - (a) Implicit function theorems
 - (b) Exponential family models
- 2. Some thoughts on Fisher information
 - (a) Information inequality (Cramer-Rao)
 - (b) The real actual information inequality

1 Recap

1.1 Recap of Taylor expansions

For a vector-valued function $f : \mathbb{R}^d \to \mathbb{R}^d$, we have

$$f(y) = f(x) + Df(x)(y - x) + O(||y - x||).$$

We can also write

$$f(y) = f(x) + (Df(x) + E(x, y))(y - x),$$

where E(x, y) = o(1).

If Df(x) is L-Lipchitz, we have that

$$E(x,y) \le \frac{L}{2}||y-x||.$$

1.2 Recap of MLE

We denote by $\hat{\theta}_n$ the MLE for $\{P_{\theta}\}$, then (here, $\theta \in \Theta \subset \mathbb{R}^d$)

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, I_{\theta}^{-1}),$$

where I_{θ} is the Fisher information matrix.

2 Moment method

Let X_1, \dots, X_n be a sample of random variable X from a distribution P_{θ} that depends on a parameter θ . Suppose X takes values in \mathcal{X} , and that $f : \mathcal{X} \to \mathbb{R}^d$ is a vector-valued function such that $P_{\theta}||f||^2 < \infty$, we denote by

$$e(\theta) = \mathbb{E}_{P_{\theta}}[f(X)]$$

the expectation of f(X) under P_{θ} .

The idea of moment method is to estimate θ by

$$e(\hat{\theta}) = \mathbb{P}_n f(X),$$

where

$$\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

The starting point of moment method is central limit theorem. For function f, we have that

$$\sqrt{n}(\mathbb{P}_n f - \mathbb{P}_{\theta} f) \xrightarrow{d} N(0, \Sigma),$$

where

$$\Sigma = Cov(f).$$

Suppose e is "really nice", we have that

$$\hat{e} = e^{-1}(\mathbb{P}_n f).$$

We denote by

$$\dot{e^{-1}}(t) = \frac{\partial}{\partial t}(e^{-1})(t),$$

and delta method gives that

$$\begin{aligned}
\sqrt{n}(e^{-1}(\mathbb{P}_n f - \theta) &= \sqrt{n}(e^{-1}(\mathbb{P}_n f) - e^{-1}(\mathbb{P}_{\theta} f)) \\
\stackrel{d}{\to} &e^{-1}(P_{\theta} f)N(0, Cov_{\theta} f) \\
&= N(0, (e^{-1})(P_{\theta} f)Cov_{\theta} f(e^{-1})(P_{\theta} f)^T).
\end{aligned}$$

2.1 Inverse function theorem

Lemma 1 (VDV Lemmas 4.2-4.3). Let $F : \mathbb{R}^d \to \mathbb{R}^d$ be a vector-valued function. We assume that F is continuously differentiable in a neighborhood of $\theta \in \mathbb{R}^d$, and that $F'(\theta) \in \mathbb{R}^{d \times d}$ is invertible for t near $F(\theta)$. Then we have that $F^{-1}(t)$ is well-defined and that

$$(F^{-1})'(t) = \frac{\partial}{\partial t}F^{-1}(t) = (F'(F^{-1}(t)))^{-1}.$$

2.2 Asymptotic normality via inverse function theorem

In this part, we assume that $P_{\theta_0}f = 0$.

Theorem 2. Let $e(\theta) = P_{\theta}f$ be one-to-one on an open set $\Theta \subset \mathbb{R}^d$ and continuously differentiable at $\theta_0 \in \Theta$. Assume $e'(\theta_0) \in \mathbb{R}^{d \times d}$ is non-singular. Assume $P_{\theta_0}||f||^2 < \infty$, $X_i \stackrel{i.i.d.}{\sim} P_{\theta_0}$, then $\hat{\theta}_n = e^{-1}(P_n f)$ exists eventually, and

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d, P_{\theta_0}} N(0, e'(\theta_0)^{-1} P_{\theta_0} f f^T (e'(\theta_0)^{-1})^T).$$

Proof We have that

$$P_n f \xrightarrow{a.s.} P_{\theta_0} f = e(\theta_0)$$

Eventually, $\hat{\theta} = e^{-1}(P_n f)$ exists, and in this neighborhood, e^{-1} is differentiable with

$$(e^{-1})'(e(\theta_0)) = (e'(e^{-1}(e(\theta_0))))^{-1} = e'(\theta_0)^{-1}.$$

3 Exponential family models

Definition 3.1. $\{P_{\theta}\}_{\theta \in \Theta}$ is a regular exponential family if there is a sufficient statistic $T : \mathcal{X} \to \mathbb{R}^d$ such that P_{θ} has density

$$P_{\theta} = exp(\theta^T T(x) - A(\theta))$$

with respect to μ , where $A(\theta) = \log \int e^{\theta^T T(x)} d\mu(x)$.

Differentiability of $A(\theta) = A(\theta)$ is convex in θ and C^{∞} in its domain with

$$\frac{\partial^k e^{A(\theta)}}{\partial \theta_1^{\alpha_1} \cdots \partial \theta_d^{\alpha_d}} = \int T_1(x)^{\alpha_1} \cdots T_d(x)^{\alpha_d} e^{\theta^T T(x)} d\mu(x)$$

for $\alpha \in \mathbb{N}^d$, $\sum_{j=1}^d \alpha_j = k$. Therefore,

$$\nabla A(\theta) = \nabla \log e^{A(\theta)}$$

= $\frac{1}{e^{A(\theta)}} \int T(x) e^{\theta^T T(x)} d\mu(x)$
= $\mathbb{E}_{\theta}[T(x)],$

$$\nabla^2 A(\theta) = \int T T^T dP_{\theta}$$

= $(\int T dP_{\theta}) (\int T dP_{\theta})^T$
= $Cov_{\theta}(T).$

Applying inverse function theorem We have

$$e(\theta) = \mathbb{E}_{\theta}[T(x)],$$

 $e'(\theta) = Cov_{\theta}[T(x)].$

Assuming $Cov_{\theta}[T(x)] \succ 0$, the solution $\hat{\theta}_n$ to

$$\frac{1}{n}\sum_{i=1}^{n}T(X_i) = e(\theta) = \mathbb{E}_{\theta}[T(x)]$$

eventually exists, and

$$\begin{aligned}
\sqrt{n}(\hat{\theta}_n - \theta_n) &\stackrel{d}{\to} & N(0, (e'(\theta_0))^{-1} Cov_{\theta_0}(T(x))(e'(\theta_0))^{-1})^T) \\
&= & N(0, Cov_{\theta_0}(T)^{-1}) \\
&= & N(0, \mathbb{E}_{\theta_0}(i_\theta i_\theta^T)) = N(0, I_{\theta_0}^{-1}).
\end{aligned}$$

Now we show MLE estimator equals moment estimator for exponential families. MLE maximizes $\theta^T P_n T(x) - A(\theta)$. As

$$\nabla_{\theta}(\theta^T P_n T(x) - A(\theta)) = P_n T(x) - e(\theta),$$

we have that MLE estimator $\hat{\theta}$ is determined by

$$P_n T(x) = e(\hat{\theta}).$$

4 Fisher information and the biggest con in the history of statistics

Recall the Fisher information $I_{\theta} = \mathbb{E}_{\theta}[\nabla l_{\theta}(\nabla l_{\theta})^{T}]$. Given enough smoothness,

$$I_{\theta} = -\mathbb{E}[\nabla^2 l_{\theta}].$$

It seems like larger I_{θ} will lead to easier estimation.

4.1 Multi-dimensional information inequalities

The idea is to lower bound the variance of different procedures. Consider $\delta : \mathcal{X} \to \mathbb{R}$ and $\Psi : \mathcal{X} \to \mathbb{R}^d$. Suppose that $\mathbb{E}_{\theta}[\Psi] = 0$. We define $\gamma = [Cov(\Psi_i, \delta)]_{i=1}^d \in \mathbb{R}^d$, $C = Cov_{\theta}(\Psi) = \mathbb{E}_{\theta}[\Psi \Psi^T] \in \mathbb{R}^{d \times d}$.

Lemma 3. We have that

$$Var(\delta) \ge \gamma^T C^{-1} \gamma.$$

Proof Consider

$$Cov(\delta, v^T \Psi) = \mathbb{E}[(\delta - \mathbb{E}\delta)(v^T \Psi)] \le \sqrt{Var(\delta)}\sqrt{Var(v^T \Psi)}$$

$$Cov(\delta, v^T \Psi) = \sum_{j=1}^{a} v_j Cov(\delta, \Psi_j) = \sum_{j=1}^{a} v_j \gamma_j = v^T \gamma.$$
$$Var(v^T \Psi) = v^T Cv.$$

We have

$$\frac{(v^T \gamma)^2}{v^T C v} \le Var(\delta)$$

Now we choose v to optimize the lower bound.

Fact If $A \succ 0$, then

$$\sup_{v \neq 0} \frac{(v^T u)^2}{v^T A v} = u^T A^{-1} u.$$

Proof of fact

$$\begin{split} v^T u &= (A^{\frac{1}{2}}v)^T (A^{-\frac{1}{2}}u), \\ v^T A v &= ||A^{\frac{1}{2}}v||_2^2. \\ \\ \frac{(v^T u)^2}{v^T A v} &= \frac{[(A^{\frac{1}{2}}v)^T (A^{-\frac{1}{2}}u)]^2}{||A^{\frac{1}{2}}v||_2^2} \\ &\leq \ ||A^{-\frac{1}{2}}u||_2^2 = u^T A^{-1}u \end{split}$$

The equality holds if $v = A^{-1}u$. Choosing $v = C^{-1}\gamma$, we gain from the fact that

$$Var(\delta) \ge \gamma^T C^{-1} \gamma.$$

Theorem 4 (Cramer-Rao). Let $g(\theta) = \mathbb{E}_{\theta}[\delta] \in \mathbb{R}$ and $I_{\theta} = \mathbb{E}_{\theta}[\nabla l_{\theta}(\nabla l_{\theta})^{T}] \succ 0$, then

$$Var_{\theta}(\delta) \ge \nabla g(\theta)^T I_{\theta}^{-1} \nabla g(\theta).$$

Set $\Psi(x) = \nabla_{\theta} l_{\theta}(x)$, we have that $\mathbb{E}_{\theta}[\Psi] = 0$, and that \mathbf{Proof}

$$\mathbb{E}[(\delta - g(\theta))\Psi] = \mathbb{E}[\delta\Psi]$$

= $\mathbb{E}[\delta\nabla l_{\theta}]$
= $\mathbb{E}[\delta\frac{\nabla p_{\theta}}{p_{\theta}}]$
= $\int \delta\nabla p_{\theta} d\mu(x).$

Under good regularity conditions, we have that

$$\mathbb{E}[(\delta - g(\theta))\Psi] = \nabla \int \delta(x) p_{\theta}(x) d\mu(x) = \nabla g(\theta).$$

We take

$$\gamma = \nabla g(\theta), C = I_{\theta}$$

to get the desired result.

Corollary 5 (Cramer-Rao). If $\hat{\theta} : \mathcal{X} \to \Theta$ is unbiased, then

$$\mathbb{E}[||\hat{\theta} - \theta||_2^2] \ge tr(I_{\theta}^{-1})$$

and

$$\mathbb{E}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)] \succeq I_{\theta}^{-1}.$$

Proof Take

$$g(\theta) = v^T \theta$$
$$\delta = v^T \hat{\theta}(X).$$

Applying the Cramer-Rao theorem,

$$\mathbb{E}[(v^T(\hat{\theta} - \theta))^2] \ge v^T I_{\theta}^{-1} v$$

and

$$\mathbb{E}[(v^T(\hat{\theta}-\theta))^2] = \mathbb{E}[tr((\hat{\theta}-\theta)(\hat{\theta}-\theta)^T v v^T)] = v^T Cov(\hat{\theta})v.$$

Why this is a con?

- 1. Proof does not give much intuition.
- 2. There are tons of great biased estimators.

We have that

$$\mathbb{E}[(\hat{\theta} - \theta)^2] = (\mathbb{E}(\hat{\theta} - \theta))^2 + Var(\hat{\theta})$$

For Gaussian mean estimation, let $X \sim N(\mu, I_n)$, then the James-Stein estimator $\hat{\mu} = (1 - r(||X||))X$ is biased, but has lower MSE when $n \geq 3$.

For ridge regression, $y = X\beta + \epsilon$, then the ridge regression estimator is $\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$, and it has lower MSE than $\hat{\beta}_{OLS} = \hat{\beta}_0$ if $X^T X$ is ill-conditioned.

4.2 The real theorem: Le Cam and Hajek's local asymptotic minimax theorem

Fix θ_0 and let $\Pi_{n,c}$ be uniform distribution over $\{\theta : ||\theta - \theta_0|| \leq \frac{c}{\sqrt{n}}\}$. Then for any symmetric, bounded, bowl-shaped L,

$$\liminf_{C \to +\infty} \liminf_{n \to +\infty} \inf_{\hat{\theta}_n} \int \mathbb{E}_{\theta} [L(\sqrt{n}(\hat{\theta}_n - \theta))] \Pi_{n,c}(\theta) d\theta \ge \mathbb{E}[L(Z)],$$

where $Z \sim N(0, I_{\theta_0}^{-1})$.

Here, E[L(Z)] estimates $Z \sim N(0, I_{\theta_0}^{-1})$ by 0. If we let $L(t) = t^2$, $E[L(Z)] = tr(I_{\theta_0}^{-1})$.