Lecturer: Yu Bai/John Duchi
Scribe: Shuangning Li, Theodor Misiakiewicz
(2)Warning: these notes may contain factual errors

Reading: VDV Chapter 5.1-5.6; ELST Chapter 7.1-7.3

Outline of Lecture 2:

1. Basic consistency and identifiability
2. Asymptotic Normality
(a) Taylor expansions
(b) Classical log-likelihood \& asymptotic normality
(c) Fisher Information

Recap of Delta Method Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows:

Claim 1. If $r_{n}\left(T_{n}-\theta\right) \xrightarrow{d} T$, and $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is smooth, then $r_{n}\left(\phi\left(T_{n}\right)-\phi(\theta)\right) \rightarrow \phi^{\prime}(\theta) T$, if $\phi^{\prime}(\theta) \neq$ 0.

Idea of proof:

$$
\begin{aligned}
r_{n}\left(\phi\left(T_{n}\right)-\phi(\theta)\right) & =r_{n}\left(\phi^{\prime}(\theta)\left(T_{n}-\theta\right)+o_{p}\left(T_{n}-\theta\right)\right) \\
& =r_{n}\left(\phi^{\prime}(\theta)\left(T_{n}-\theta\right)\right)+o_{p}\left(r_{n}\left(T_{n}-\theta\right)\right) \\
& =r_{n}\left(\phi^{\prime}(\theta)\left(T_{n}-\theta\right)\right)+o_{p}(1) \\
& \xrightarrow{d} \phi^{\prime}(\theta) T .
\end{aligned}
$$

Notation: (from now on) Given distribution P on \mathcal{X}, function $f: \mathcal{X} \rightarrow \mathbb{R}^{d}$,

$$
P f:=\int f d P=\int_{\mathcal{X}} f(x) d P(x)=\mathbb{E}_{P}[f(x)]
$$

Example 1 (Empirical distributions): Consider the observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$. Let the empirical distribution $P_{n}=\frac{1}{n} \sum_{i=1}^{n} 1_{x_{i}}$. For any set $A \subseteq \mathcal{X}$,

$$
P_{n}(A)=\frac{1}{n}\left|\left\{i \in[n]: x_{i} \in A\right\}\right|=P_{n} 1_{\{x \in A\}} .
$$

Hence for any function $f, P_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$.

Taylor expansions

1. Real-valued functions

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at $x \in \mathbb{R}^{d}$,

$$
\begin{gathered}
f(y)=f(x)+\nabla f(x)^{T}(y-x)+o(\|y-x\|) . \text { (Remainder version) } \\
f(y)=f(x)+\nabla f(\tilde{x})^{T}(y-x) . \text { (Mean value version) }
\end{gathered}
$$

If f is twice differentiable,

$$
\begin{gathered}
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x)(y-x)+o\left(\|y-x\|^{2}\right) . \text { (Remainder version) } \\
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(\tilde{x})(y-x) . \text { (Mean value version) }
\end{gathered}
$$

2. Vector-valued functions

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, f(x)=\left[\begin{array}{c}f_{1} \\ f_{2} \\ \vdots \\ f_{k}\end{array}\right]$. Define $D f(x)=\left[\begin{array}{c}\nabla f_{1}^{T}(x) \\ \nabla f_{2}^{T}(x) \\ \vdots \\ \nabla f_{k}^{T}(x)\end{array}\right] \in \mathbb{R}^{k \times d}$ to be the Jacobian of f.
Then,

$$
f(y)=f(x)+D f(x)(y-x)+o(\|y-x\|) . \text { (Remainder version) }
$$

But for mean value version, we don't necessarily have \tilde{x} such that

$$
f(y)=f(x)+D f(\tilde{x})(y-x) .
$$

Example 2 (Failure of mean value version): Let $f: \mathbb{R} \rightarrow \mathbb{R}^{k}, f(x)=\left[\begin{array}{c}x \\ x^{2} \\ \vdots \\ x^{k}\end{array}\right]$, then $\operatorname{Df}(x)=$ $\left[\begin{array}{c}1 \\ 2 x \\ k x^{k-1}\end{array}\right]$. Take $x=0, y=1$, then $f(y)-f(x)=\mathbf{1}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$. Yet $D f(\tilde{x})=\left[\begin{array}{c}1 \\ 2 \tilde{x} \\ \vdots \\ k \tilde{x}^{k-1}\end{array}\right] \neq\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right] . \boldsymbol{\&}$

Example 3 (Quantitative continuity guarantees): Recall the operator norm of A is

$$
\|A\|_{o p}=\sup _{\|u\|_{2}=1}\|A u\|_{2}
$$

this implied that $\|A x\|_{2} \leq\|A\|_{o p}\|x\|_{2}$. For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, differentiable, assume that $D f$ is L-Lipschitz, i.e. $\|D f(x)-D f(y)\|_{o p} \leq L\|x-y\|_{2}$. (Roughly, this means that $\left\|D^{2} f(x)\right\| \leq L$.)

Claim 2. We have

$$
f(y)=f(x)+D f(x)(y-x)+R(y-x),
$$

where R is a remainder matrix (depending on x, y) that satisfy $\|R\|_{\text {op }} \leq \frac{L}{2}\|y-x\|$ and $\|R(y-x)\| \leq$ $\frac{L}{2}\|y-x\|^{2}$.

Proof Define $\phi_{i}(t)=f_{i}((1-t) x+t y), \phi_{i}:[0,1] \rightarrow \mathbb{R}$. Note that $\phi_{i}(0)=f_{i}(x), \phi_{i}(1)=f_{i}(y)$, and $\phi_{i}^{\prime}=\left(\nabla f_{i}((1-t) x+t y)\right)^{T}(y-x)$. Then

$$
D f((1-t) x+t y)(y-x)=\left[\begin{array}{c}
\nabla f_{1}^{T}((1-t) x+t y) \\
\nabla f_{2}^{T}((1-t) x+t y) \\
\vdots \\
\nabla f_{k}^{T}((1-t) x+t y)
\end{array}\right](y-x)=\left[\begin{array}{c}
\phi_{1}^{\prime}(t) \\
\phi_{2}^{\prime}(t) \\
\vdots \\
\phi_{k}^{\prime}(t)
\end{array}\right] .
$$

Since $\phi_{i}(1)-\phi_{i}(0)=\int_{0}^{1} \phi_{1}^{\prime}(t) d t$,

$$
\begin{aligned}
f(y)-f(x) & =\int_{0}^{1} D f((1-t) x+t y)(y-x) d t \\
& =\int_{0}^{1}(D f((1-t) x+t y)-D f(x))(y-x) d t+D f(x)(y-x) .
\end{aligned}
$$

To bound the remainder term,

$$
\begin{aligned}
\left\|\int_{0}^{1}(D f((1-t) x+t y)-D f(x))(y-x) d t\right\| & \leq \int_{0}^{1}\|(D f((1-t) x+t y)-D f(x))(y-x)\| d t \\
& \leq \int_{0}^{1}\|D f((1-t) x+t y)-D f(x)\|_{o p}\|(y-x)\| d t \\
& \leq \int_{0}^{1} L\|t(y-x)\|\|(y-x)\| d t \\
& \leq \int_{0}^{1} L t\|(y-x)\|^{2} d t \\
& =\frac{L}{2}\|(y-x)\|^{2}
\end{aligned}
$$

Consistency and asymptotic distribution:

Setting:

1. We have some model family $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ of distributions on \mathcal{X}, where $\Theta \subseteq \mathbb{R}^{d}$. Also, assume all P_{θ} have density p_{θ} with respect to base measure μ on \mathcal{X}, i.e. $p_{\theta}=\frac{d P_{\theta}}{d \mu}$.
2. We consider the \log-likelihood of the distribution $\ell_{\theta}(x)=\log p_{\theta}(x)$, with

$$
\begin{aligned}
\nabla \ell_{\theta}(x) & :=\left[\frac{\partial}{\partial \theta_{j}} \log p_{\theta}(x)\right]_{j=1}^{d} \in \mathbb{R}^{d} \\
\nabla^{2} \ell_{\theta}(x) & :=\left[\frac{\partial^{2}}{\partial \theta_{i} \theta_{j}} \log p_{\theta}(x)\right]_{i, j=1}^{d} \in \mathbb{R}^{d \times d}
\end{aligned}
$$

For simplicity, we will denote: $\dot{\ell}_{\theta} \equiv \nabla \ell_{\theta}(x)$ and $\ddot{\ell}_{\theta} \equiv \nabla^{2} \ell_{\theta}(x)$.
The gradient of the log-likelihood is often called the "score function." We will use this term to refer to $\nabla \ell_{\theta}(x)$ throughout future lectures.
3. Observe $X_{i} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}$ where θ_{0} is unknown. Our goal is to estimate θ_{0}.
4. A standard estimator is to choose $\hat{\theta}_{n}$ to maximize the "likelihood," i.e. the probability of the data.

$$
\hat{\theta}_{n} \in \underset{\theta \in \Theta}{\operatorname{argmax}} P_{n} \ell_{\theta}(x)
$$

Main questions:

1. Consistency: does $\hat{\theta}_{n} \xrightarrow{p} \theta_{0}$ as $n \rightarrow+\infty$?
2. Asymptotic distribution: does $r_{n}\left(\hat{\theta}_{n} \xrightarrow{p} \theta_{0}\right)$ converge in distribution ?
3. Optimality ? (in the next lecture)

Consistency:

Definition 0.1 (Identifiability). A model $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ is identifiable if $P_{\theta_{1}} \neq P_{\theta_{2}}$ for all $\theta_{1}, \theta_{2} \in \Theta$ $\left(\theta_{1} \neq \theta_{2}\right)$.

Equivalently, $D_{\mathrm{kl}}\left(P_{\theta_{1}} \| P_{\theta_{2}}\right)>0$ when $\theta_{1} \neq \theta_{2}$. Recall that $D_{\mathrm{kl}}\left(P_{\theta_{1}} \| P_{\theta_{2}}\right)=\int \log \frac{d P_{\theta_{1}}}{d P_{\theta_{2}}} d P_{\theta_{1}}$.
Note that $P_{\theta_{1}} \neq P_{\theta_{2}}$ means that \exists set $A \subseteq \mathcal{X}$ such that $P_{\theta_{1}}(A) \neq P_{\theta_{2}}(A)$.
Now that we have established what both identifiability and consistency mean, we can prove a basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 3 (Finite Θ consistency of MLE). Suppose $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ is identifiable and card $\Theta<\infty$. Then, if $\hat{\theta}_{n}:=\operatorname{argmax}_{\theta \in \Theta} P_{n} \ell_{\theta}(x), \hat{\theta}_{n} \xrightarrow{p} \theta_{0}$ when $X_{i} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}$.

Proof of Proposition By the Strong Law of Large Numbers, we know that $P_{n} \ell_{\theta}(x) \xrightarrow{\text { a.s. }} P_{\theta_{0}} \ell_{\theta}(x)$ when $x_{i} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}$.

$$
\begin{aligned}
P_{\theta_{0}} \ell_{\theta_{0}}(x)-P_{\theta_{0}} \ell_{\theta}(x) & =\mathbb{E}_{\theta_{0}}\left[\log \frac{p_{\theta_{0}}(x)}{p_{\theta}(x)}\right] \\
& =D_{\mathrm{kl}}\left(P_{\theta_{0}} \| P_{\theta}\right)
\end{aligned}
$$

We know that $D_{\mathrm{kl}}\left(P_{\theta_{0}} \| P_{\theta}\right)>0 \underline{\text { unless }} \theta=\theta_{0}$. Combining this remark with $P_{n} \ell_{\theta_{0}}(x)-P_{n} \ell_{\theta}(x) \xrightarrow{\text { a.s. }}$ $D_{\mathrm{kl}}\left(P_{\theta_{0}} \| P_{\theta}\right)$, we deduce that there exists $N(\theta)$ such that for all $n>N(\theta)$, we have $P_{n} \ell_{\theta_{0}}(x)-$ $P_{n} \ell_{\theta}(x)>0$ with probability 1.

It follows that for $n>\max _{\theta \in \Theta, \theta \neq \theta_{0}} N(\theta)$, we have $P_{n} \ell_{\theta_{0}}(x)>P_{n} \ell_{\theta}(x)$ for all $\theta \neq \theta_{0}$. Therefore $\hat{\theta}_{n}=\theta_{0}$ and we conclude that, for sufficiently large n and finite Θ, we have $\hat{\theta}_{n}=\theta_{0}$ "eventually."

Remark The above result can fail for Θ infinite even if Θ is countable.

Uniform law: One sufficient condition often used for consistency results is a uniform law, i.e. for $x_{i} \stackrel{\text { iid }}{\sim} P$, we have $\sup _{\theta \in \Theta}\left|P_{n} \ell_{\theta}-P \ell_{\theta}\right| \xrightarrow{p} 0$. In this case, if $P_{\theta_{0}} \ell_{\theta}<P_{\theta_{0}} \ell_{\theta_{0}}-2 \epsilon$ and $\sup _{\theta \in \Theta} \mid P_{n} \ell_{\theta}-$ $P_{\theta_{0}} \ell_{\theta} \mid \leq \epsilon$, then $\hat{\theta}_{n} \neq \theta$. We will have:

$$
\hat{\theta}_{n} \in\left\{\theta: P_{\theta_{0}} \ell_{\theta} \geq P_{\theta_{0}} \ell_{\theta_{0}}-2 \epsilon\right\}
$$

Now, that we have established some basic definitions and results regarding the consistency of estimators, we turn our attention to understanding their asymptotic behavior.

Asymptotic Normality via Taylor Expansions:

Definition 0.2 (Operator norm). $\|A\|_{\text {op }}:=\sup _{\|u\|_{2} \leq 1}\|A u\|_{2}$.
Note: $A \in \mathbb{R}^{k \times d}, u \in \mathbb{R}^{d}$ and $\|A x\|_{2} \leq\|A\|_{\text {op }}\|x\|_{2}$.
Before we do anything, we have to make several assumptions.

1. We have a "nice, smooth" model, i.e. the Hessian is Lipschitz-continuous. To be rigorous, the following must hold:

$$
\left\|\nabla^{2} \ell_{\theta_{1}}(x)-\nabla^{2} \ell_{\theta_{2}}(x)\right\|_{\mathrm{op}} \leq M(x)\left\|\theta_{1}-\theta_{2}\right\|_{2} \quad \mathbb{E}_{\theta}\left[M^{2}(x)\right]<\infty
$$

2. The MLE, $\hat{\theta}_{n} \in \operatorname{argmax}_{\theta \in \Theta} P_{n} \ell_{\theta}(x)$, is consistent, i.e. $\hat{\theta}_{n} \xrightarrow{p} \theta_{0}$ under $P_{\theta_{0}}$.
3. Θ is a convex set.

Theorem 4. Let $x_{i} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}, \hat{\theta}_{n}$ be the MLE (i.e. $\nabla P_{n} \ell_{\hat{\theta}_{n}}=0$) and assume the conditions stated above. Then, $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathrm{~N}\left(0,\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1} P_{\theta_{0}} \nabla \ell_{\theta_{0}} \nabla \ell_{\theta_{0}}^{T}\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1}\right)$.

Remark Let us rewrite the asymptotic variance. Given that $\nabla^{2} \ell_{\theta}=\nabla\left(\frac{\nabla p_{\theta}}{p_{\theta}}\right)=\frac{\nabla^{2} p_{\theta}}{p_{\theta}}-\frac{\nabla p_{\theta} \nabla p_{\theta}^{T}}{p_{\theta}^{2}}$:

$$
\mathbb{E}_{\theta}\left[\frac{\nabla^{2} p_{\theta}}{p_{\theta}}\right]=\int \frac{\nabla^{2} p_{\theta}}{p_{\theta}} p_{\theta} d \mu=\int \nabla^{2} p_{\theta} d \mu=\nabla^{2} \int p_{\theta} d \mu=0
$$

As a result:

$$
\mathbb{E}_{\theta}\left[\nabla^{2} \ell_{\theta}\right]=-\mathbb{E}_{\theta}\left[\left(\frac{\nabla p_{\theta}}{p_{\theta}}\right)\left(\frac{\nabla p_{\theta}}{p_{\theta}}\right)^{T}\right]=-\operatorname{Cov}\left(\nabla \ell_{\theta}(x)\right)
$$

We define the Fisher Information as $I_{\theta}:=\mathbb{E}_{\theta}\left[\nabla \ell_{\theta}(x) \nabla \ell_{\theta}(x)^{T}\right]=\operatorname{Cov}_{\theta} \nabla \ell_{\theta}$ where the final equality holds because $\mathbb{E}_{\theta}\left[\nabla \ell_{\theta}(x)\right]=0\left(\theta\right.$ maximizes $\left.\mathbb{E}_{\theta}\left[\ell_{\theta}(x)\right]\right)$. To show this, assume that we can swap ∇, \mathbb{E}. Then, $\nabla \ell_{\theta}(x)=\nabla \log p_{\theta}(x)=\frac{\nabla p_{\theta}(x)}{p_{\theta}(x)}$. Using that result, we see that:

$$
\mathbb{E}_{\theta}\left[\nabla \ell_{\theta}\right]=\mathbb{E}\left[\frac{\nabla p_{\theta}}{p_{\theta}}\right]=\int \frac{\nabla p_{\theta}}{p_{\theta}} p_{\theta} d \mu=\int \nabla p_{\theta} d \mu=\nabla \int p_{\theta} d \mu=\nabla(1)=0 .
$$

We now have a more compact representation of the asymptotic distribution described in the Theorem above.

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathrm{~N}\left(0, I_{\theta_{0}}^{-1} I_{\theta_{0}} I_{\theta_{0}}^{-1}\right)=\mathrm{N}\left(0, I_{\theta_{0}}^{-1}\right)
$$

Consider $I_{\theta}=-\nabla^{2} \mathbb{E}\left[\ell_{\theta}(x)\right]$. If the magnitude of the second derivative is "large," that implies that the log-likelihood is steep around the global maximum (making it "easy" to find). Alternatively, if the magnitude of $-\nabla^{2} \mathbb{E}\left[\ell_{\theta}(x)\right]$ is "small," we do not have sufficient curvature to find the optimal θ.

Proof Let $\widehat{r}(x) \in \mathbb{R}^{d \times d}$ be the remainder matrix in Taylor expansion of the gradients of the individual log likelihood terms around θ_{0} guaranteed by Taylor's theorem (which certainly depends on $\widehat{\theta}_{n}-\theta_{0}$), that is,

$$
\nabla \ell_{\widehat{\theta}_{n}}(x)=\nabla \ell_{\theta_{0}}(x)+\nabla^{2} \ell_{\theta_{0}}(x)\left(\widehat{\theta}_{n}-\theta_{0}\right)+\widehat{r}(x)\left(\widehat{\theta}_{n}-\theta_{0}\right),
$$

where by Taylor's theorem $\|\widehat{r}(x)\|_{\mathrm{op}} \leq M(x)\left\|\widehat{\theta}_{n}-\theta_{0}\right\|$. Writing this out using the empirical distribution and that $\widehat{\theta}_{n}=\operatorname{argmax}_{\theta} P_{n} \ell_{\theta}(X)$, we have

$$
\begin{equation*}
\nabla P_{n} \ell_{\widehat{\theta}_{n}}=0=P_{n} \nabla \ell_{\theta_{0}}+P_{n} \nabla^{2} \ell_{\theta_{0}}\left(\widehat{\theta}_{n}-\theta_{0}\right)+P_{n} \widehat{r}(X)\left(\widehat{\theta}_{n}-\theta_{0}\right) . \tag{1}
\end{equation*}
$$

But of course, expanding the term $P_{n} \widehat{r}(X) \in \mathbb{R}^{d \times d}$, we find that

$$
P_{n} \widehat{r}(X)=\frac{1}{n} \sum_{i=1}^{n} \widehat{r}\left(X_{i}\right) \text { and }\left\|P_{n} \widehat{r}\right\|_{\text {op }} \leq \underbrace{\left.\frac{1}{n} \sum_{i=1}^{n} M(X)\right]}_{\substack{a, s \\ \mathbb{E}_{\theta_{0}}}} \underbrace{n}_{\rightarrow 0} X_{i})\left\|\widehat{\theta}_{n}-\theta_{0}\right\|)=o_{P}(1) \text {. }
$$

In particular, revisiting expression (1), we have

$$
\begin{aligned}
0 & =P_{n} \nabla \ell_{\theta_{0}}+P_{n} \nabla^{2} \ell_{\theta_{0}}\left(\widehat{\theta}_{n}-\theta_{0}\right)+o_{P}(1)\left(\widehat{\theta}_{n}-\theta_{0}\right) . \\
& =P_{n} \nabla \ell_{\theta_{0}}+\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+\left(P_{n}-P_{\theta_{0}}\right) \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)\right)\left(\widehat{\theta}_{n}-\theta_{0}\right) .
\end{aligned}
$$

The strong law of large numbers guarantees that $\left(P_{n}-P_{\theta_{0}}\right) \nabla^{2} \ell_{\theta_{0}}=o_{P}(1)$, and multiplying each side by \sqrt{n} yields

$$
\sqrt{n}\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)\right)\left(\widehat{\theta}_{n}-\theta_{0}\right)=-\sqrt{n} P_{n} \nabla \ell_{\theta_{0}} .
$$

Applying Slutsky's theorem gives the result: indeed, we have $T_{n}=\sqrt{n} P_{n} \nabla \ell_{\theta_{0}}$ satisfies $T_{n} \xrightarrow{d}$ $\mathrm{N}\left(0, I_{\theta_{0}}\right)$ by the central limit theorem, and noting that $P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)$ is eventually invertible gives

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathrm{~N}\left(0,\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1} I_{\theta_{0}}\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1}\right)
$$

as desired.

