Stats 300b: Theory of Statistics

Winter 2018

Lecture 3 – January 16

Lecturer: Yu Bai/John Duchi

chi Scribe: Shuangning Li, Theodor Misiakiewicz

Warning: these notes may contain factual errors

Reading: VDV Chapter 5.1-5.6; ELST Chapter 7.1-7.3

Outline of Lecture 2:

- 1. Basic consistency and identifiability
- 2. Asymptotic Normality
 - (a) Taylor expansions
 - (b) Classical log-likelihood & asymptotic normality
 - (c) Fisher Information

Recap of Delta Method Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows:

Claim 1. If $r_n(T_n-\theta) \xrightarrow{d} T$, and $\phi : \mathbb{R}^d \to \mathbb{R}^k$ is smooth, then $r_n(\phi(T_n)-\phi(\theta)) \to \phi'(\theta)T$, if $\phi'(\theta) \neq 0$.

Idea of proof:

$$r_n(\phi(T_n) - \phi(\theta)) = r_n(\phi'(\theta)(T_n - \theta) + o_p(T_n - \theta))$$

= $r_n(\phi'(\theta)(T_n - \theta)) + o_p(r_n(T_n - \theta))$
= $r_n(\phi'(\theta)(T_n - \theta)) + o_p(1)$
 $\stackrel{d}{\to} \phi'(\theta)T.$

Notation: (from now on) Given distribution P on \mathcal{X} , function $f : \mathcal{X} \to \mathbb{R}^d$,

$$Pf := \int f dP = \int_{\mathcal{X}} f(x) dP(x) = \mathbb{E}_P[f(x)]$$

Example 1 (Empirical distributions): Consider the observations $x_1, x_2, \ldots, x_n \in \mathcal{X}$. Let the empirical distribution $P_n = \frac{1}{n} \sum_{i=1}^n 1_{x_i}$. For any set $A \subseteq \mathcal{X}$,

$$P_n(A) = \frac{1}{n} |\{i \in [n] : x_i \in A\}| = P_n \mathbb{1}_{\{x \in A\}}.$$

Hence for any function f, $P_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$.

Taylor expansions

1. Real-valued functions

For $f : \mathbb{R}^d \to \mathbb{R}$ differentiable at $x \in \mathbb{R}^d$,

$$f(y) = f(x) + \nabla f(x)^T (y - x) + o(||y - x||).$$
 (Remainder version)

$$f(y) = f(x) + \nabla f(\tilde{x})^T (y - x)$$
. (Mean value version)

If f is twice differentiable,

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) + o(||y - x||^2).$$
 (Remainder version)

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(\tilde{x}) (y - x).$$
 (Mean value version)

2. Vector-valued functions

Let
$$f : \mathbb{R}^d \to \mathbb{R}^k$$
, $f(x) = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_k \end{bmatrix}$. Define $Df(x) = \begin{bmatrix} \nabla f_1^T(x) \\ \nabla f_2^T(x) \\ \vdots \\ \nabla f_k^T(x) \end{bmatrix} \in \mathbb{R}^{k \times d}$ to be the Jacobian of f .

Then,

$$f(y) = f(x) + Df(x)(y - x) + o(||y - x||).$$
 (Remainder version)

But for mean value version, we don't necessarily have \tilde{x} such that

$$f(y) = f(x) + Df(\tilde{x})(y - x).$$

Example 2 (Failure of mean value version): Let $f : \mathbb{R} \to \mathbb{R}^k$, $f(x) = \begin{bmatrix} x \\ x^2 \\ \vdots \\ \vdots \\ x^k \end{bmatrix}$, then $Df(x) = \begin{bmatrix} x \\ x^k \end{bmatrix}$

$$\begin{bmatrix} 1\\2x\\kx^{k-1}\end{bmatrix}$$
. Take $x = 0, y = 1$, then $f(y) - f(x) = \mathbf{1} = \begin{bmatrix} 1\\1\\\vdots\\1\end{bmatrix}$. Yet $Df(\tilde{x}) = \begin{bmatrix} 1\\2\tilde{x}\\\vdots\\k\tilde{x}^{k-1}\end{bmatrix} \neq \begin{bmatrix} 1\\1\\\vdots\\1\end{bmatrix}$.

Example 3 (Quantitative continuity guarantees): Recall the operator norm of A is

$$||A||_{op} = \sup_{||u||_2=1} ||Au||_2,$$

this implied that $||Ax||_2 \leq ||A||_{op} ||x||_2$. For $f : \mathbb{R}^d \to \mathbb{R}^k$, differentiable, assume that Df is L-Lipschitz, i.e. $||Df(x) - Df(y)||_{op} \leq L ||x - y||_2$. (Roughly, this means that $||D^2f(x)|| \leq L$.) Claim 2. We have

$$f(y) = f(x) + Df(x)(y - x) + R(y - x),$$

where R is a remainder matrix (depending on x, y) that satisfy $||R||_{\text{op}} \leq \frac{L}{2} ||y - x||$ and $||R(y - x)|| \leq \frac{L}{2} ||y - x||^2$.

Proof Define $\phi_i(t) = f_i((1-t)x + ty), \ \phi_i : [0,1] \to \mathbb{R}$. Note that $\phi_i(0) = f_i(x), \ \phi_i(1) = f_i(y),$ and $\phi'_i = \left(\nabla f_i((1-t)x + ty)\right)^T (y-x)$. Then

$$Df((1-t)x+ty)(y-x) = \begin{bmatrix} \nabla f_1^T((1-t)x+ty) \\ \nabla f_2^T((1-t)x+ty) \\ \vdots \\ \nabla f_k^T((1-t)x+ty) \end{bmatrix} (y-x) = \begin{bmatrix} \phi_1'(t) \\ \phi_2'(t) \\ \vdots \\ \phi_k'(t) \end{bmatrix}$$

Since $\phi_i(1) - \phi_i(0) = \int_0^1 \phi'_1(t) dt$,

$$f(y) - f(x) = \int_0^1 Df((1-t)x + ty)(y-x)dt$$

= $\int_0^1 \left(Df((1-t)x + ty) - Df(x) \right)(y-x)dt + Df(x)(y-x).$

To bound the remainder term,

$$\begin{split} \| \int_0^1 \left(Df((1-t)x + ty) - Df(x) \right) (y - x) dt \| &\leq \int_0^1 \| \left(Df((1-t)x + ty) - Df(x) \right) (y - x) \| dt \\ &\leq \int_0^1 \| Df((1-t)x + ty) - Df(x) \|_{op} \| (y - x) \| dt \\ &\leq \int_0^1 L \| t(y - x) \| \| (y - x) \| dt \\ &\leq \int_0^1 L t \| (y - x) \|^2 dt \\ &= \frac{L}{2} \| (y - x) \|^2. \end{split}$$

÷

Consistency and asymptotic distribution:

Setting:

- 1. We have some model family $\{P_{\theta}\}_{\theta \in \Theta}$ of distributions on \mathcal{X} , where $\Theta \subseteq \mathbb{R}^d$. Also, assume all P_{θ} have density p_{θ} with respect to base measure μ on \mathcal{X} , i.e. $p_{\theta} = \frac{dP_{\theta}}{d\mu}$.
- 2. We consider the log-likelihood of the distribution $\ell_{\theta}(x) = \log p_{\theta}(x)$, with

$$\nabla \ell_{\theta}(x) := \left[\frac{\partial}{\partial \theta_{j}} \log p_{\theta}(x)\right]_{j=1}^{d} \in \mathbb{R}^{d}$$
$$\nabla^{2} \ell_{\theta}(x) := \left[\frac{\partial^{2}}{\partial \theta_{i} \theta_{j}} \log p_{\theta}(x)\right]_{i,j=1}^{d} \in \mathbb{R}^{d \times d}$$

For simplicity, we will denote: $\dot{\ell}_{\theta} \equiv \nabla \ell_{\theta}(x)$ and $\ddot{\ell}_{\theta} \equiv \nabla^2 \ell_{\theta}(x)$.

The gradient of the log-likelihood is often called the "score function." We will use this term to refer to $\nabla \ell_{\theta}(x)$ throughout future lectures.

- 3. Observe $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ where θ_0 is unknown. Our goal is to estimate θ_0 .
- 4. A standard estimator is to choose $\hat{\theta}_n$ to maximize the "likelihood," i.e. the probability of the data.

$$\hat{\theta}_n \in \operatorname*{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x)$$

Main questions:

- 1. Consistency: does $\hat{\theta}_n \xrightarrow{p} \theta_0$ as $n \to +\infty$?
- 2. Asymptotic distribution: does $r_n(\hat{\theta}_n \xrightarrow{p} \theta_0)$ converge in distribution ?
- 3. Optimality ? (in the next lecture)

Consistency:

Definition 0.1 (Identifiability). A model $\{P_{\theta}\}_{\theta \in \Theta}$ is <u>identifiable</u> if $P_{\theta_1} \neq P_{\theta_2}$ for all $\theta_1, \theta_2 \in \Theta$ $(\theta_1 \neq \theta_2)$.

Equivalently, $D_{\mathrm{kl}}(P_{\theta_1} \| P_{\theta_2}) > 0$ when $\theta_1 \neq \theta_2$. Recall that $D_{\mathrm{kl}}(P_{\theta_1} \| P_{\theta_2}) = \int \log \frac{dP_{\theta_1}}{dP_{\theta_2}} dP_{\theta_1}$. Note that $P_{\theta_1} \neq P_{\theta_2}$ means that \exists set $A \subseteq \mathcal{X}$ such that $P_{\theta_1}(A) \neq P_{\theta_2}(A)$.

Now that we have established what both identifiability and consistency mean, we can prove a basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 3 (Finite Θ consistency of MLE). Suppose $\{P_{\theta}\}_{\theta \in \Theta}$ is identifiable and card $\Theta < \infty$. Then, if $\hat{\theta}_n := \operatorname{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x), \ \hat{\theta}_n \xrightarrow{p} \theta_0$ when $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$.

Proof of Proposition By the Strong Law of Large Numbers, we know that $P_n \ell_{\theta}(x) \xrightarrow{a.s.} P_{\theta_0} \ell_{\theta}(x)$ when $x_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$.

$$P_{\theta_0}\ell_{\theta_0}(x) - P_{\theta_0}\ell_{\theta}(x) = \mathbb{E}_{\theta_0}\left[\log\frac{p_{\theta_0}(x)}{p_{\theta}(x)}\right]$$
$$= D_{\mathrm{kl}}\left(P_{\theta_0} \| P_{\theta}\right)$$

We know that $D_{\mathrm{kl}}(P_{\theta_0}||P_{\theta}) > 0$ <u>unless</u> $\theta = \theta_0$. Combining this remark with $P_n\ell_{\theta_0}(x) - P_n\ell_{\theta}(x) \xrightarrow{a.s.} D_{\mathrm{kl}}(P_{\theta_0}||P_{\theta})$, we deduce that there exists $N(\theta)$ such that for all $n > N(\theta)$, we have $P_n\ell_{\theta_0}(x) - P_n\ell_{\theta}(x) > 0$ with probability 1.

It follows that for $n > \max_{\theta \in \Theta, \theta \neq \theta_0} N(\theta)$, we have $P_n \ell_{\theta_0}(x) > P_n \ell_{\theta}(x)$ for all $\theta \neq \theta_0$. Therefore $\hat{\theta}_n = \theta_0$ and we conclude that, for sufficiently large n and finite Θ , we have $\hat{\theta}_n = \theta_0$ "eventually." \Box

Remark The above result can fail for Θ infinite even if Θ is countable.

Uniform law: One sufficient condition often used for consistency results is a <u>uniform law</u>, i.e. for $x_i \stackrel{\text{iid}}{\sim} P$, we have $\sup_{\theta \in \Theta} |P_n \ell_{\theta} - P \ell_{\theta}| \xrightarrow{p} 0$. In this case, if $P_{\theta_0} \ell_{\theta} < P_{\theta_0} \ell_{\theta_0} - 2\epsilon$ and $\sup_{\theta \in \Theta} |P_n \ell_{\theta} - P_{\theta_0} \ell_{\theta}| \le \epsilon$, then $\hat{\theta}_n \neq \theta$. We will have:

$$\theta_n \in \{\theta : P_{\theta_0}\ell_\theta \ge P_{\theta_0}\ell_{\theta_0} - 2\epsilon\}$$

Now, that we have established some basic definitions and results regarding the consistency of estimators, we turn our attention to understanding their asymptotic behavior.

Asymptotic Normality via Taylor Expansions:

Definition 0.2 (Operator norm). $|||A|||_{\text{op}} := \sup_{||u||_2 \leq 1} ||Au||_2$. Note: $A \in \mathbb{R}^{k \times d}, u \in \mathbb{R}^d$ and $||Ax||_2 \leq |||A|||_{\text{op}} ||x||_2$.

Before we do anything, we have to make several assumptions.

1. We have a "nice, smooth" model, i.e. the Hessian is Lipschitz-continuous. To be rigorous, the following must hold:

$$\left\| \nabla^2 \ell_{\theta_1}(x) - \nabla^2 \ell_{\theta_2}(x) \right\|_{\text{op}} \le M(x) \left\| \theta_1 - \theta_2 \right\|_2 \qquad \qquad \mathbb{E}_{\theta}[M^2(x)] < \infty$$

- 2. The MLE, $\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(x)$, is consistent, i.e. $\hat{\theta}_n \xrightarrow{p} \theta_0$ under P_{θ_0} .
- 3. Θ is a convex set.

Theorem 4. Let $x_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$, $\hat{\theta}_n$ be the MLE (i.e. $\nabla P_n \ell_{\hat{\theta}_n} = 0$) and assume the conditions stated above. Then, $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} \mathsf{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1} P_{\theta_0} \nabla \ell_{\theta_0} \nabla \ell_{\theta_0} \nabla \ell_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1}).$

Remark Let us rewrite the asymptotic variance. Given that $\nabla^2 \ell_{\theta} = \nabla \left(\frac{\nabla p_{\theta}}{p_{\theta}} \right) = \frac{\nabla^2 p_{\theta}}{p_{\theta}} - \frac{\nabla p_{\theta} \nabla p_{\theta}^T}{p_{\theta}^2}$:

$$\mathbb{E}_{\theta}\left[\frac{\nabla^2 p_{\theta}}{p_{\theta}}\right] = \int \frac{\nabla^2 p_{\theta}}{p_{\theta}} p_{\theta} d\mu = \int \nabla^2 p_{\theta} d\mu = \nabla^2 \int p_{\theta} d\mu = 0$$

As a result:

$$\mathbb{E}_{\theta}[\nabla^{2}\ell_{\theta}] = -\mathbb{E}_{\theta}\left[\left(\frac{\nabla p_{\theta}}{p_{\theta}}\right)\left(\frac{\nabla p_{\theta}}{p_{\theta}}\right)^{T}\right] = -\operatorname{Cov}_{\theta}(\nabla\ell_{\theta}(x))$$

We define the <u>Fisher Information</u> as $I_{\theta} := \mathbb{E}_{\theta}[\nabla \ell_{\theta}(x) \nabla \ell_{\theta}(x)^{T}] = \operatorname{Cov}_{\theta} \nabla \ell_{\theta}$ where the final equality holds because $\mathbb{E}_{\theta}[\nabla \ell_{\theta}(x)] = 0$ (θ maximizes $\mathbb{E}_{\theta}[\ell_{\theta}(x)]$). To show this, assume that we can swap ∇, \mathbb{E} . Then, $\nabla \ell_{\theta}(x) = \nabla \log p_{\theta}(x) = \frac{\nabla p_{\theta}(x)}{p_{\theta}(x)}$. Using that result, we see that:

$$\mathbb{E}_{\theta}[\nabla \ell_{\theta}] = \mathbb{E}\left[\frac{\nabla p_{\theta}}{p_{\theta}}\right] = \int \frac{\nabla p_{\theta}}{p_{\theta}} p_{\theta} d\mu = \int \nabla p_{\theta} d\mu = \nabla \int p_{\theta} d\mu = \nabla(1) = 0.$$

We now have a more compact representation of the asymptotic distribution described in the Theorem above.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathsf{N}(0, I_{\theta_0}^{-1} I_{\theta_0} I_{\theta_0}^{-1}) = \mathsf{N}(0, I_{\theta_0}^{-1})$$

Consider $I_{\theta} = -\nabla^2 \mathbb{E}[\ell_{\theta}(x)]$. If the magnitude of the second derivative is "large," that implies that the log-likelihood is steep around the global maximum (making it "easy" to find). Alternatively, if the magnitude of $-\nabla^2 \mathbb{E}[\ell_{\theta}(x)]$ is "small," we do not have sufficient curvature to find the optimal θ . **Proof** Let $\hat{r}(x) \in \mathbb{R}^{d \times d}$ be the remainder matrix in Taylor expansion of the gradients of the individual log likelihood terms around θ_0 guaranteed by Taylor's theorem (which certainly depends on $\hat{\theta}_n - \theta_0$), that is,

$$\nabla \ell_{\widehat{\theta}_n}(x) = \nabla \ell_{\theta_0}(x) + \nabla^2 \ell_{\theta_0}(x)(\widehat{\theta}_n - \theta_0) + \widehat{r}(x)(\widehat{\theta}_n - \theta_0),$$

where by Taylor's theorem $\| \widehat{r}(x) \|_{op} \leq M(x) \| \widehat{\theta}_n - \theta_0 \|$. Writing this out using the empirical distribution and that $\widehat{\theta}_n = \operatorname{argmax}_{\theta} P_n \ell_{\theta}(X)$, we have

$$\nabla P_n \ell_{\widehat{\theta}_n} = 0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0} (\widehat{\theta}_n - \theta_0) + P_n \widehat{r}(X) (\widehat{\theta}_n - \theta_0).$$
(1)

But of course, expanding the term $P_n \hat{r}(X) \in \mathbb{R}^{d \times d}$, we find that

$$P_n \widehat{r}(X) = \frac{1}{n} \sum_{i=1}^n \widehat{r}(X_i) \text{ and } ||P_n \widehat{r}||_{\text{op}} \leq \underbrace{\frac{1}{n} \sum_{i=1}^n M(X_i)}_{\stackrel{\text{a.s.}}{\xrightarrow{\to}} \mathbb{E}_{\theta_n}[M(X)]} \underbrace{||\widehat{\theta}_n - \theta_0||}_{\stackrel{p}{\to} 0} = o_P(1).$$

In particular, revisiting expression (1), we have

$$0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0} (\widehat{\theta}_n - \theta_0) + o_P(1) (\widehat{\theta}_n - \theta_0).$$

= $P_n \nabla \ell_{\theta_0} + \left(P_{\theta_0} \nabla^2 \ell_{\theta_0} + (P_n - P_{\theta_0}) \nabla^2 \ell_{\theta_0} + o_P(1) \right) (\widehat{\theta}_n - \theta_0).$

The strong law of large numbers guarantees that $(P_n - P_{\theta_0})\nabla^2 \ell_{\theta_0} = o_P(1)$, and multiplying each side by \sqrt{n} yields

$$\sqrt{n}(P_{\theta_0}\nabla^2\ell_{\theta_0} + o_P(1))(\widehat{\theta}_n - \theta_0) = -\sqrt{n}P_n\nabla\ell_{\theta_0}.$$

Applying Slutsky's theorem gives the result: indeed, we have $T_n = \sqrt{n}P_n \nabla \ell_{\theta_0}$ satisfies $T_n \xrightarrow{d} \mathsf{N}(0, I_{\theta_0})$ by the central limit theorem, and noting that $P_{\theta_0} \nabla^2 \ell_{\theta_0} + o_P(1)$ is eventually invertible gives

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \xrightarrow{d} \mathsf{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1} I_{\theta_0} (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1})$$

as desired.