Lecture 2 - January 11

Lecturer: John Duchi
Scribe: Sky Cao

Warning: these notes may contain factual errors

Reading: VDV Chapter 2 and Chapter 3

1. Recap Convergence
2. Delta Method - first order, higher order

1 Convergence recap

Definition 1.1. A sequence of random variables $\left\{X_{n}\right\}$ converges in probability to a random variable X, denoted $X_{n} \xrightarrow{p} X$, if $P\left(d\left(X_{n}, X\right)>\varepsilon\right) \rightarrow 0$ for all $\varepsilon>0$.
Definition 1.2. A sequence of random variables $\left\{X_{n}\right\}$ converges in distribution to a random variable X, denoted $X_{n} \xrightarrow{d} X$, if $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x)$ for all continuity points x of the function $x \mapsto P(X \leq x)$. This is equivalent to the assertion that $\mathbb{E} f\left(X_{n}\right) \rightarrow \mathbb{E} f(X)$ for all bounded continuous functions f.

Theorem 1. (Slutsky's Theorem).

1. If $d\left(X_{n}, Y_{n}\right) \xrightarrow{p} 0, X_{n} \xrightarrow{d} X$, then $Y_{n} \xrightarrow{d} X$.
2. If $X_{n} \xrightarrow{d} X, Y_{n} \xrightarrow{d} c$, then $\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, c)$.

Remark If the limiting distribution of Y_{n} is not a constant, then the second part of the theorem does not necessarily hold. Because when Y is random and (X, c) is replaced by (X, Y), we must now specify the joint law of (X, Y).

Theorem 2. (Portmanteau Theorem). Let X_{n}, X be random vectors. The following are equivalent.

1. X_{n} converges in distribution to X
2. $\mathbb{E}\left(f\left(X_{n}\right)\right) \rightarrow \mathbb{E}(f(X))$ for all bounded and continuous f
3. $\mathbb{E}\left(f\left(X_{n}\right)\right) \rightarrow \mathbb{E}(f(X))$ for all one-Lipschitz f with $f \in[0,1]$
4. $\liminf _{n \rightarrow \infty} \mathbb{E}\left(f\left(X_{n}\right)\right) \geq E(f(X))$ for non-negative and continuous f.
5. $\liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \in O\right) \geq \mathbb{P}(X \in O)$ for all open sets O
6. $\lim \sup _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \in C\right) \leq \mathbb{P}(X \in C)$ for all closed sets C
7. $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \in B\right)=\mathbb{P}(X \in B)$ for all sets B such that $\mathbb{P}(X \in \partial B)=0$

Remark We call a collection of functions \mathcal{F} a determining class if $\mathbb{E}\left(f\left(X_{n}\right)\right) \rightarrow \mathbb{E}(f(X))$ for all $f \in \mathcal{F}$ if and only if $X_{n} \xrightarrow{d} X$. For example, from the theory of characteristic functions, we have a determining class $\mathcal{F}=\left\{x \mapsto e^{i t^{T} x}: t \in \mathbb{R}^{d}\right\}$.

2 Delta Method

Suppose we have a sequence of statistics T_{n} that estimate a parameter θ and we know that $r_{n}\left(T_{n}-\theta\right)$ converges in distribution to T , and $r_{n} \rightarrow \infty$. Intuitively, we think of r_{n} as the rate of convergence. Suppose a function ϕ is smooth in the neighborhood of θ. Is it possible to say anything about $\phi\left(T_{n}\right)-\phi(\theta)$?

Theorem 3. (Delta Method). Let $r_{n} \rightarrow \infty$ and $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be differentiable at θ and assume that $r_{n}\left(T_{n}-\theta\right) \xrightarrow{d} T$ for some random vector T. Then

1. $r_{n}\left(\phi\left(T_{n}\right)-\phi(\theta)\right)$ converges in distribution to $\phi^{\prime}(\theta) T$
2. $r_{n}\left(\phi\left(T_{n}\right)-\phi(\theta)\right)-r_{n} \phi^{\prime}(\theta)\left(T_{n}-\theta\right)$ converges in probability to 0

Here $\phi^{\prime}(\theta) \in \mathbb{R}^{k \times d}$ is the Jacobian Matrix $\left[\phi^{\prime}(\theta)\right]_{i j}=\frac{\partial \phi_{i}(\theta)}{\partial \theta_{j}}$
Proof By the definition of the derivative, we have that

$$
\phi(t)=\phi(\theta)+\phi^{\prime}(\theta)(t-\theta)+o(\|t-\theta\|)
$$

i.e.

$$
\begin{equation*}
\phi(t)=\phi(\theta)+\phi^{\prime}(\theta)(t-\theta)+R(\|t-\theta\|) \tag{1}
\end{equation*}
$$

where $\lim _{h \rightarrow 0} \frac{R(h)}{h}=0$. Since $r_{n}\left(T_{n}-\theta\right)$ converges in distribution, we know that $r_{n}\left(T_{n}-\theta\right)=O_{p}(1)$, which implies that $r_{n}\left\|T_{n}-\theta\right\|=O_{p}(1)$. We also have that $\left\|T_{n}-\theta\right\|=o_{p}(1)$, which implies $R\left(\left\|T_{n}-\theta\right\|\right)=$ $o_{p}\left(\left\|T_{n}-\theta\right\|\right)$. Thus

$$
r_{n} R\left(\left\|T_{n}-\theta\right\|\right)=r_{n} o_{p}\left(\left\|T_{n}-\theta\right\|\right)=o_{p}\left(r_{n}\left\|T_{n}-\theta\right\|\right)=o_{p}\left(O_{p}(1)\right)=o_{p}(1)
$$

Using this along with (1), we have the second part of the theorem. Noting that $r_{n} \phi^{\prime}(\theta)\left(T_{n}-\theta\right) \xrightarrow{d} \phi^{\prime}(\theta) T$, and applying Slutsky's theorem, we get the first part as well.

Example 1: Let $X_{i} \stackrel{\text { iid }}{\sim} P, \mathbb{E}(X)=\theta \neq 0, \operatorname{Cov}(X)=\Gamma$ and $\phi(h)=\frac{1}{2}\|h\|^{2}$. Then

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{k} X_{i}-\theta\right) \xrightarrow{d} \mathrm{~N}(0, \Gamma)
$$

By the Delta Method, we have

$$
\sqrt{n}\left(\frac{1}{2}\left\|\frac{1}{n} \sum X_{i}\right\|^{2}-\frac{1}{2}\|\theta\|^{2}\right) \xrightarrow{d} \mathrm{~N}\left(0, \theta^{T} \Gamma \theta\right)
$$

Note if $\|\theta\|^{2}=0$, we actually have

$$
\sqrt{n}\left(\frac{1}{2}\left\|\frac{1}{n} \sum X_{i}\right\|^{2}-\frac{1}{2}\|\theta\|^{2}\right) \xrightarrow{p} 0
$$

So when $\theta=0$, we would like to somehow adjust $r_{n}\left(\phi\left(T_{n}\right)-\phi(\theta)\right)$ so that we get convergence to a non-trivial distribution. This is a precursor to the next section.

Example 2: (Sample Variance). Let X_{1}, \ldots, X_{n} be i.i.d with finite fourth moment. Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$, $S_{n}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$, and $\overline{X_{n}^{2}}=n^{-1} \sum_{i=1}^{n} X_{i}^{2}$. We want weak convergence of $\sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right)$. First note that $S_{n}^{2}=\overline{X_{n}^{2}}-\left(\bar{X}_{n}\right)^{2}=\phi\left(\bar{X}_{n}, \overline{X_{n}^{2}}\right)$, where $\phi(x, y)=y-x^{2}$. With $\alpha_{i}=\mathbb{E} X^{i}$, one can check that

$$
\sqrt{n}\left(\left(\frac{\bar{X}_{n}}{X_{n}^{2}}\right)-\binom{\alpha_{1}}{\alpha_{2}}\right) \stackrel{d}{\rightarrow} \mathrm{~N}\left(0,\left(\begin{array}{cc}
\alpha_{2}-\alpha_{1}^{2} & \alpha_{3}-\alpha_{1} \alpha_{2} \\
\alpha_{3}-\alpha_{1} \alpha_{2} & \alpha_{4}-\alpha_{2}^{2}
\end{array}\right)\right)
$$

Then by the Delta Method, we obtain

$$
\sqrt{n}\left(S_{n}^{2}-\sigma^{2}\right) \xrightarrow{d} \mathrm{~N}\left(0, \alpha_{4}-\alpha_{2}^{2}\right)
$$

3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if $\phi^{\prime}(\theta)=0$, just look at higher order approximations. Usually in such settings, $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and so $\phi^{\prime}(\theta)=\nabla \phi(\theta)=0 \in \mathbb{R}^{d}$.

Theorem 4. (Second Order Delta Method). Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be twice differentiable at θ, and $r_{n}\left(T_{n}-\theta\right) \xrightarrow{d} T$. Then if $\boldsymbol{\nabla} \phi(\theta)=0$, we have

$$
r_{n}^{2}\left(\phi\left(T_{n}\right)-\phi(\theta)\right) \stackrel{d}{\rightarrow} \frac{1}{2} T^{T} \nabla^{2} \phi(\theta) T
$$

Proof By definition,

$$
\phi(t)=\phi(\theta)+\nabla \phi(\theta)^{T}(t-\theta)+\frac{1}{2}(t-\theta)^{T} \nabla^{2} \phi(\theta)(t-\theta)+R(\|t-\theta\|)
$$

where $R(h)=o\left(\|h\|^{2}\right)$. Since $\nabla \phi(\theta)=0$, we actually have

$$
\begin{equation*}
\phi(t)=\phi(\theta)+\frac{1}{2}(t-\theta)^{T} \nabla^{2} \phi(\theta)(t-\theta)+R(\|t-\theta\|) \tag{2}
\end{equation*}
$$

Note $r_{n}^{2} R\left(\left\|T_{n}-\theta\right\|\right)=r_{n}^{2} o_{p}\left(\left\|T_{n}-\theta\right\|^{2}\right)=o_{p}\left(\left\|r_{n}\left(T_{n}-\theta\right)\right\|^{2}\right)$. Since $r_{n}\left(T_{n}-\theta\right)$ converges in distribution, so does $\left\|r_{n}\left(T_{n}-\theta\right)\right\|^{2}$, and so $\left\|r_{n}\left(T_{n}-\theta\right)\right\|^{2}=O_{p}(1)$. Thus

$$
\begin{equation*}
r_{n}^{2} R\left(\left\|T_{n}-\theta\right\|\right)=o_{p}\left(O_{p}(1)\right)=o_{p}(1) \tag{3}
\end{equation*}
$$

Now by the continuous mapping theorem, we have that

$$
\begin{equation*}
\frac{1}{2}\left(r_{n}\left(T_{n}-\theta\right)\right)^{T} \nabla^{2} \phi(\theta)\left(r_{n}\left(T_{n}-\theta\right)\right) \xrightarrow{d} \frac{1}{2} T^{T} \nabla^{2} \phi(\theta) T \tag{4}
\end{equation*}
$$

So combining (2), (3), (4) and using Slutsky's lemma, we get the desired convergence in distribution.

Example 3: Estimating the parameter of a Bernoulli random variable.
Suppose $\theta \in(0,1), X_{i} \sim \operatorname{Bernoulli}(\theta)$. To estimate θ, we may use the sample mean $\hat{\theta}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$. Clearly, $\mathbb{E} \hat{\theta}_{n}=\theta, \operatorname{Var}\left(\hat{\theta}_{n}\right)=\frac{\theta(1-\theta)}{n}$. Instead of using mean squared error to measure the performance of $\hat{\theta}_{n}$, let us use the Kullback-Leibler (KL) divergence (or the log loss). This is

$$
D_{K L}(P \| Q)=\int d P \log \left(\frac{d P}{d Q}\right)
$$

Let $P_{t}=\operatorname{Bernoulli}(t), t \in[0,1]$. So

$$
D_{K L}\left(P_{t} \| P_{\theta}\right)=t \log \frac{t}{\theta}+(1-t) \log \frac{1-t}{1-\theta}
$$

Let $\phi(t)=D_{K L}\left(P_{t} \| P_{\theta}\right)$. Then

$$
\phi^{\prime}(t)=\log \frac{t}{1-t}-\log \frac{\theta}{1-\theta}
$$

Note $\phi^{\prime}(\theta)=0$. So we need the second derivative:

$$
\phi^{\prime \prime}(t)=\frac{1}{t}+\frac{1}{1-t}=\frac{1}{t(1-t)},
$$

and so $\phi^{\prime \prime}(\theta)=\frac{1}{\theta(1-\theta)}$. So by the second order Delta Method,

$$
n D_{K L}\left(P_{\hat{\theta}_{n}} \| P_{\theta}\right) \xrightarrow{d} \frac{1}{2} \chi_{(1)}^{2} .
$$

