
Stats 300b: Theory of Statistics Winter 2018

Lecture 1 – January 9

Lecturer: John Duchi Scribe: Shichang Zhang

� Warning: these notes may contain factual errors

Reading: VDV Chapter 2.1, 2.2

Outline of lecture 1:

• Administrative basic stuff

• Overview of the course

• Basic theory of convergence of random variables

• Probability, Asymptotic Statistics and Distributions

Course Website: stanford.edu/class/stats300b

Grading:

5% Scribe notes
60% Problem sets (weekly)
35% Finale

Overview of the course:

In this course, we will be majorly dealing with big data sets, N →∞

1. Convergence of random variables, random vectors, estimators and functions.

2. Understanding various notions of optimality and quality of estimators and tests. We will
not be talking about admissibility as it is too difficult. What we will try to do in this course is
to show that certain estimators are good under specific metrics or to prove that certain estimators
are unimprovable.

Backgrounds needed:

1. Stat 300a (helpful but not strictly necessary).

2. Probability at stat 310a level. e.g. Convergence of distribution, Helly Selection Theorem
etc.

3. Analysis at Math 171 level. e.g. Compactness, metric spaces etc.
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Part I of the course:

Finite dimensional problems and statistic models.

Example 1: One example problem is that we have Xi
iid∼ Pθ, Xi ∈ Rd, where d is fixed. We want

to understand the estimators of parameter θ ∈ Rd of distribution Pθ. ♣

Part II of the course:

Infinite dimensional or uniform laws of convergence for random variables, concentration inequal-
ities, and finite sample guarantees.

Tools for showing results like:

Xi
iid∼ Pθ For functions F : X × θ → R, we will look into how

1

n

n∑
i=1

F (xi, θ)→ E[F (x, θ)]

uniformly in θ.

Part III of the course:

Optimality and comparisons of estimators

In this part, we will try to understand when an estimator θ̂ of θ is good or optimal. Also, we
will look into how to distinguish Pθ from Pθ+∆ when ∆ is small.

Basic theory of convergence of random variables:

In this part we will go through basic definitions, Continuous Mapping Theorem and Portman-
teau Lemma.

For now, assume Xi ∈ Rd, d <∞. We first give the definition of various convergence of random
variables.

Definition 0.1. (Convergence in probability) We call Xn
p→ X (sequence of random variables

converges to X) if
lim
n→∞

P(||Xn −X|| ≥ ε) = 0, ∀ε > 0

In a general metric space, with metric ρ, the above definition becomes

lim
n→∞

P(ρ(Xn, X) ≥ ε) = 0, ∀ε > 0
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Definition 0.2. (Weak convergence or convergence in distribution)
We say

Xn
d→ X

if for ∀x ∈ Rd,
P(Xn ≤ x)→ P(X ≤ x)

at all X ∈ Rd such that x→ P(X ≤ x) is continuous.

Note: In the above definition P(X ≤ x) = P(X ∈ (−∞, x1]× · · · × (−∞, xd])

We also have an alternative definition for convergence in distribution.

Definition 0.3.
Xn

d→ X

if for all bounded continuous function f ,

E[f(Xn)]→ E[f(X)]

Below is the definition of Lp convergence.

Definition 0.4. (Convergence in the pth mean)
We say that

Xn
Lp

→ X

if
lim
n→∞

E[||Xn −X||p] = 0

Finally, we give the definition of almost surely convergence for random variables.

Definition 0.5. (Xn converges almost surely to X)
We say that

Xn
a.s.→ X

if
P( lim
n→∞

Xn 6= X) = 0

i.e.
P( lim
n→∞

||Xn −X|| ≥ ε) = 0, ∀ε > 0

Standard implications:

For the various types of convergence above, we have the following relationships.

Xn
a.s.→ X ⇒ Xn

p→ X ⇒ Xn
d→ X

Xn
Lp

→ X ⇒ Xn
p→ X

All the reversed directions may not be true.
Examples of almost surely convergence and convergence in probability can be found in the

strong law of large numbers and central limits theorem, as stated below.
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Example 2: Let Xi
iid∼ P , cov(Xi) = Σ = E[(Xi − µ)(Xi − µ)T ], µ = E[Xi]. Then

1

n

n∑
i=1

Xi
a.s.→ µ

√
n(

1

n

n∑
i=1

Xi − µ)
d→ N(0,Σ)

(The second line is the CLT) ♣

Basic Convergence Theorems: (See Chapter 2 of VDV for all proofs)

Theorem 1. (Continuous Mapping Theorem) Let g be continuous on a set B such that P(X ∈
B) = 1 then

Xn
p→ X ⇒ g(Xn)

p→ g(X)

Xn
a.s.→ X ⇒ g(Xn)

a.s.→ g(X)

Xn
d→ X ⇒ g(Xn)

d→ g(X)

For the heuristics of the third line: If g is continuous, then f ◦ g is continuous and bounded for
any continuous bounded f . Thus,

E[f(g(Xn))]→ E[f(g(x))]

Another important theorem we will need is Slutsky’s Theorem.

Theorem 2. (Slutsky’s Theorem)
(1) If c is constant, then

Xn
d→ c⇔ Xn

p→ c

(2) If Xn
d→ X, d(Xn, Yn)

p→ 0, then

Yn
d→ X

(3) If Xn
d→ X, Yn

p→ c (c constant), then(
Xn

Yn

)
d→
(
X
c

)
The Slutsky’s theorem allows us to ignore low order terms in convergence. Also, the following

example shows that stronger impliations over part (3) may not be true.

Example 3: If Xn
d→ N(0, I), then −Xn

d→ N(0, I).
However, (

Xn

−Xn

)
d→
(

Z
−Z

)
where Z ∼ N(0, I) instead of N(0, I). ♣

Sketch of Proof
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(1) The ”⇐ ” direction is trivial and given in the previous sections. For ”⇒ ” direction of the
theorem, take

f(x) = ||x− c|| ∧ 1 = min{||x− c||, 1}

then
E[f(xn)]→ E[f(c)] = 0

i.e.
E[||xn − c|| ∧ 1]→ 0

(2) Let f be 1-Lipschitz and bounded by 1, then we have

E[f(Yn)] ∈ E[f(Xn)]± E[d(Xn, Yn) ∧ 1]

Since E[f(Xn)]→ E[f(X)] and E[d(Xn, Yn) ∧ 1]→ 0, we have

E[f(Yn)]→ E[f(X)]

and thus Yn → X.

Here E[d(Xn, Yn) ∧ 1]→ 0 because

E[d(Xn, Yn) ∧ 1] ≤ εP(d(Xn, Yn) ≤ ε) + P(d(Xn, Yn) > ε)

and the second term on the right side goes to 0.

(3) We have (
Xn

Yn

)
−
(
X
c

)
=

(
0

Yn − c

)
p→ 0

By part (2), (
Xn

c

)
d→
(
X
c

)
⇒
(
Xn

Yn

)
d→
(
X
c

)

Consequences of Slutsky’s Theorem:

If Xn
d→ X, and Yn

d→ c, then

Xn + Yn
d→ X + c

YnXn
d→ cX

If c 6= 0,
Xn

Yn

d→ X

c

Proof Apply Continuous Mapping Theorem and Slutsky’s Theorem and the statements can be
proved.
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Note: For the third line of convergence, if c ∈ Rd×d is a matrix, then (2) still holds. Moreover,
if det(c) 6= 0, (3) holds but

Y −1
n Xn

d→ c−1X

because c→ c−1 is continuous when det(c) 6= 0.

Example 4: (t-type statistics) Let Xi
iid∼ P , Cov(Xi) = Γ � 0. Define

µn =
1

n

n∑
i=1

Xi

Sn =
1

n

n∑
i=1

(Xi − µn)(Xi − µn)T

Tn =
1√
n
S
− 1

2
n

n∑
i=1

(Xi − µn)

Then Tn
d→ N(0, I).

The reason is that
µn

p→ E[X]

Sn
p→ Γ

and
1√
n

n∑
i=1

(Xi − µ)
d→ N(0,Γ)

Apply Slutsky’s Theorem,

Tn −
1√
n

Γ−
1
2

n∑
i=1

(Xi − µ)
p→ 0

♣

Big-O Notation:

In this part we introduce the big-o and little-o notation in probability.

Let Xn be random vectors, and Rn be R-valued random variables. We say that Xn = op(Rn) if
∃ random vectors Yn such that

Xn = YnRn

Yn
p→ 0

This is called ”little o-pea”.

We say that Xn = Op(Rn) if ∃ random vectors Yn where Yn = Op(1). Yn = Op(1) means that
{Yn} is uniformly tight. i.e.

lim
M→∞

sup
n∈N

P(||Yn|| ≥M) = 0

or ∀ε > 0, ∃ M such that
P(||Yn|| ≥M) ≤ ε, ∀ n
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Comsequences:

With the definition above, we can get the following properties and lemma.

op(1) + op(1) = op(1)

Op(1) +Op(1) = Op(1)

op(Rn) = Op(Rn)

The third line means
Xn = op(Rn)⇒ Xn = Op(Rn)

Lemma 3. Let function R : Rd → Rk, with R(0) = 0, and Xn
p→ 0. Then

(1) If R(h) = o(||h||p) as h→ 0, then

R(Xn) = op(||Xn||p)

(2) If R(h) = O(||h||p) as h→ 0, then

R(Xn) = Op(||Xn||p)

Proof Define

g(h) =


R(h)

||h||p
, if h 6= 0

0, if h = 0

(1) Then g(h) → 0 as h → 0. Thus, g is continuous at 0 and Xn
p→ 0. Apply Continuous

Mapping Theorem(CMT), we get

g(Xn)
p→ 0

(2) ∃ M , δ > 0 such that ||g(h)|| ≤M , ∀||h|| ≤ δ. Then

P(||g(Xn)|| > M) ≤ P(||Xn|| > δ)→ 0

so
g(Xn) = Op(1)
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Big Theorem on Convergence in Distribution:

Definition 0.6. A collection of random vectors {Xα}α∈A is uniformly tight if for all ε > 0, there
exists M <∞ such that

sup
α∈A

P(‖Xα‖ ≥M) ≤ ε

Remark
A single random vector is tight since lim

M→∞
P(‖X‖ ≥M) = 0

Remark
If Xn converges in distribution to X, then {Xn}n∈N is uniformly tight, because P(‖Xn‖ ≥ t)→

P(‖X‖ ≥ t) by the continuous mapping theorem.

Theorem 4. (Prohorov’s theorem)
A collection of random vectors {Xα}α∈A is uniformly tight if and only if it is sequentially com-

pact for weak convergence. i.e. for all sequences {Xn}n∈N ⊂ {Xα}α∈A, there exists a subsequence

nk and a random vector X such that Xnk

d→ X.

Example 5: (”Easy” way to get uniformly tightness: Markov’s inequality)
Let {Xα}α∈A satisfy E(‖Xα‖p) ≤ k < ∞, for all α ∈ A and some p > 0. Then {Xα}α∈A is

uniformly tight.

Proof By markov inequality,

P(‖Xα‖ ≥M) ≤ E(‖Xα‖p))
Mp

≤ k

Mp
→ 0

as M →∞

♣
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