VC-Dimension, Covering, and Packing

John Duchi: Notes for Statistics 300b

March 2, 2017

1 Introduction

In this note, we sketch a few properties of covering numbers, VC-dimension, and provide a few pointers to more general resources for more detailed treatment of the results.

To define Vapnik-Chervonenkis dimension (VC-dimension), we begin by recalling the notion of shattering a set of points. Give a set of points $x_{1}, \ldots, x_{n} \in \mathcal{X}$, we call a vector $y \in\{-1,1\}^{n}$ a labeling of the set $\left\{x_{i}\right\}$. Then a collection of sets $\mathcal{C} \subset 2^{\mathcal{X}}$, where $C \in \mathcal{C}$ are subsets of \mathcal{X}, shatters $\left\{x_{i}\right\}$ if for each labeling y_{1}, \ldots, y_{n} of the points x_{i}, there is a set $C \in \mathcal{C}$ such that

$$
\begin{equation*}
x_{i} \in C \text { for } i \text { s.t. } y_{i}=1, \quad x_{i} \notin C \text { otherwise. } \tag{1}
\end{equation*}
$$

In general, we say \mathcal{C} realizes the labeling $y \in\{-1,1\}^{n}$ for $\left\{x_{i}\right\}$ if the containment (1) holds. The collection \mathcal{C} has VC -dimension $\operatorname{VC}(\mathcal{C})=d$ if the largest set of points x_{1}, \ldots, x_{n} it shatters is of size $n=d$. That is,

$$
\operatorname{VC}(\mathcal{C})=\sup \left\{n \in \mathbb{N}: \exists x_{1}, \ldots, x_{n} \text { s.t. } \mathcal{C} \text { shatters }\left\{x_{i}\right\}_{i=1}^{n}\right\}
$$

Put another way, if there is no set of points x_{1}, \ldots, x_{n+1} that \mathcal{C} shatters, then $\operatorname{VC}(\mathcal{C})<n+1$.
With this in mind, we follow van der Vaart and Wellner [1] and define the shattering number of the points x_{1}, \ldots, x_{n} as

$$
\Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right):=\operatorname{card}\left\{y \in\{-1,1\}^{n} \text { s.t. } \mathcal{C} \text { realizes } y \text { for }\left\{x_{1}, \ldots, x_{n}\right\}\right\}
$$

Then an equivalent definition to the VC-dimension is that

$$
\operatorname{VC}(\mathcal{C}):=\sup _{n}\left\{n: \sup _{x_{1}, \ldots, x_{n}} \Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=2^{n}\right\}
$$

2 Sauer's lemma

We now state a few results on VC-dimension, providing proofs of simplifications that make clearer what is happening. Interestingly, VC-sets have at most polynomial growth in their shattering numbers - as soon as a VC collection \mathcal{C} cannot shatter any set of n points, the number of labelings it can realize on the points is at most $n^{\mathrm{VC}(\mathcal{C})} \ll 2^{n}$. This is the content of the Sauer-Shelah lemma.

Lemma 2.1 (Sauer-Shelah lemma). Let $\mathrm{VC}(\mathcal{C})<\infty$. Then

$$
\sup _{x_{1}, \ldots, x_{n}} \Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq \sum_{k=0}^{\mathrm{VC}(\mathcal{C})}\binom{n}{k} .
$$

Proof Our proof follows an argument by Martin Wainwright. Define $\Psi_{k}(n):=\sum_{i=0}^{k}\binom{n}{i}$ and

$$
\Phi_{k}(n):=\sup _{\mathcal{C}: \operatorname{VC}(\mathcal{C}) \leq k} \sup _{x_{1}, \ldots, x_{n}} \Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)
$$

in which case the assertion is equivalent to $\Phi_{k}(n) \leq \Psi_{k}(n)$ for all k, n. We prove this by induction on the sum $n+k$.

For the base case of the induction, in which $n=0$ or $k=0$, the result is trivial-both $\Phi_{k}(n)=\Psi_{k}(n)=0$. Taking $n=1, k=1$, we have certainly that $\Psi_{1}(1)=2$ and that there are at most two labelings of a set with 1 element, so $\Phi_{1}(1)=2$.

Now, assume that we know the result holds for all pairs (n, k) with $n+k<m$ for some $m \in \mathbb{N}$. Let $n+k=m$ and let $\mathrm{VC}(\mathcal{C})=k$ for some collection of sets \mathcal{C}. Now, for $i \in\{1, \ldots, n\}$ and a set $A=\left\{x_{1}, \ldots, x_{n}\right\}$, let $A^{\prime}=A \backslash\left\{x_{1}\right\}=\left\{x_{2}, \ldots, x_{n}\right\}$, and let $\mathcal{C}^{\prime} \subset \mathcal{C}$ label A^{\prime} in as many ways as possible, i.e.

$$
\mathcal{C}^{\prime}=\underset{\mathcal{C}_{0} \subset \mathcal{C}}{\operatorname{argmax}} \Delta_{n-1}\left(\mathcal{C}_{0}, x_{2}, \ldots, x_{n}\right) .
$$

We claim that

$$
\Delta_{n}(\mathcal{C}, A)=\Delta_{n-1}\left(\mathcal{C}^{\prime}, A^{\prime}\right)+\Delta_{n-1}\left(\mathcal{C} \backslash \mathcal{C}^{\prime}, A^{\prime}\right)
$$

Indeed, consider a binary labeling $y \in\{-1,1\}^{n}$ of x_{1}, \ldots, x_{n} that \mathcal{C} realizes (recall definition (1)). Then either its latter $n-1$ components are realized by \mathcal{C}^{\prime}, or (by the maximality of \mathcal{C}^{\prime}, they are a duplicate labeling and are realized by a unique set in $\mathcal{C} \backslash \mathcal{C}^{\prime}$.

Now, of course, we have $\mathrm{VC}\left(\mathcal{C}^{\prime}\right) \leq k$, so that $\Delta_{n-1}\left(\mathcal{C}^{\prime}, A^{\prime}\right) \leq \Phi_{k}(n-1) \leq \Psi_{k}(n-1)$ by the induction hypothesis. We claim that $\operatorname{VC}\left(\mathcal{C} \backslash \mathcal{C}^{\prime}\right) \leq k-1$. Indeed, if $\mathcal{C} \backslash \mathcal{C}^{\prime}$ shatters a set $B \subset A^{\prime}$ then \mathcal{C} must shatter $B \cup\left\{x_{1}\right\}$, and so we must have $\operatorname{card}(B) \leq k-1$ because $\operatorname{VC}(\mathcal{C})=k$, and $\Delta_{n-1}\left(\mathcal{C} \backslash \mathcal{C}^{\prime}, A^{\prime}\right) \leq \Phi_{k-1}(n-1) \leq \Psi_{k-1}(n-1)$, again by the induction hypothesis. Then we have

$$
\Psi_{k}(n-1)+\Psi_{k-1}(n-1)=\sum_{i=0}^{k}\binom{n-1}{i}+\sum_{i=0}^{k-1}\binom{n-1}{i}=\sum_{i=0}^{k}\binom{n}{i}
$$

which gives the result.

3 Covering numbers for VC-classes

VC-classes of sets have finite covering numbers in a very uniform sense, which allows substantial control in concentration inequalities and uniform laws of large numbers. We begin by recalling the definition of the covering N and packing M numbers of a set Θ with metric d as

$$
N(\Theta, d, \epsilon):=\inf \left\{N: \exists \text { an } \epsilon \text {-cover }\left\{\theta^{i}\right\}_{i=1}^{N} \text { of } \Theta\right\}
$$

and

$$
M(\Theta, d, \epsilon):=\sup \left\{M: \exists \text { an } \epsilon \text {-packing }\left\{\theta^{i}\right\}_{i=1}^{M} \text { of } \Theta\right\},
$$

where we recall an ϵ-packing satisfies $d\left(\theta^{i}, \theta^{j}\right)>\epsilon$ for all i, j. The following lemma is standard.
Lemma 3.1. For any $\epsilon>0$ and set Θ with metric d,

$$
M(\Theta, d, 2 \epsilon) \leq N(\Theta, d, \epsilon) \leq M(\Theta, d, \epsilon)
$$

For a probability distribution P, we recall the definition of $L_{r}(P)$ norms on functions $f: \mathcal{X} \rightarrow \mathbb{R}$ as

$$
\|f\|_{L_{r}(P)}:=\left(\int|f(x)|^{r} d P(x)\right)^{\frac{1}{r}}
$$

For a collection of sets \mathcal{C}, we define the $L_{r}(P)$ metric between sets $A, B \subset \mathcal{X}$ by the distance between their indicators, that is,

$$
\left\|1_{A}-1_{B}\right\|_{L_{r}(P)}^{r}=\int|1(x \in A)-1(x \in B)|^{r} d P(x)
$$

We then define the covering numbers of a collection \mathcal{C} with respect to this metric on sets, denoting them by $N\left(\mathcal{C}, L_{r}(P), \epsilon\right)$. A classical result is then the following uniform control on covering numbers.

Theorem 1. Let \mathcal{C} be a class of sets with $\operatorname{VC}(\mathcal{C})<\infty$. Then there exist universal constants $C, K<\infty$ such that for all $0 \leq \epsilon<1$

$$
N\left(\mathcal{C}, L_{r}(P), \epsilon\right) \leq C \cdot \mathrm{VC}(\mathcal{C}) K^{\mathrm{VC}(\mathcal{C})}\left(\frac{1}{\epsilon}\right)^{r \mathrm{VC}(\mathcal{C})}
$$

We do not prove this theorem in its full generality, referring to van der Vaart and Wellner [1, Theorem 2.6.4] for the full proof (note that they use a slightly different definition of VC-dimension than ours, which is shifted by 1).

We can, however, provide the following weaker theorem, which is a simplification of the preceding result, and gives a flavor of the types of results one can demonstrate.

Theorem 2. Let \mathcal{C} be a VC-class with $\operatorname{VC}(\mathcal{C})=d<\infty$. Then for any $\tau>0$, there exist universal constants $C, K<\infty$ (which may depend on τ) such that for all $0 \leq \epsilon \leq 1$

$$
N\left(\mathcal{C}, L_{r}(P), \epsilon\right) \leq C \cdot K^{d \log d}\left(\frac{1}{\epsilon}\right)^{r d+\tau}
$$

Proof We provide the proof in three parts. First, we let C_{1}, \ldots, C_{N} be a maximal $\delta=\epsilon^{r}$-packing in the $L_{r}(P)$ norm, so that for $X \sim P$ we have

$$
\mathbb{E}\left[\left|1_{C_{i}}(X)-1_{C_{j}}(X)\right|^{r}\right]=\mathbb{E}\left[\left|1_{C_{i}}(X)-1_{C_{j}}(X)\right|\right]>\delta=\epsilon^{r}
$$

It is thus clear that $N\left(\mathcal{C}, \epsilon^{r}, L_{1}(P)\right) \geq N\left(\mathcal{C}, \epsilon, L_{r}(P)\right)$, so we may thus focus on the L_{1} case with the δ-packing. By Lemma 3.1, we thus have $N\left(\mathcal{C}, \delta, L_{1}(P)\right) \leq N$.

We now note that for $X \sim P$, we have

$$
P\left(X \in C_{i} \text { and } X \in C_{j}\right)<1-\delta
$$

because $\delta<\mathbb{E}\left[\left|1_{C_{i}}(X)-1_{C_{j}}(X)\right|\right]=1-\mathbb{E}\left[1_{C_{i} \cap C_{j}}(X)\right]=1-P\left(X \in C_{i}, X \in C_{j}\right)$. By independence, if $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P$, we obtain

$$
P\left(X_{1} \in C_{i} \cap C_{j}, \ldots, X_{n} \in C_{i} \cap C_{j}\right)<(1-\delta)^{n}
$$

Now, let \mathcal{E} denote the event that each C_{i} "picks out" a different subset of X_{1}, \ldots, X_{n}, that is, the sets $C_{1} \cap\left\{X_{1}, \ldots, X_{n}\right\}$ are distinct. Then by a union bound, we have

$$
\begin{equation*}
P\left(\mathcal{E}^{c}\right) \leq \sum_{i<j} P\left(C_{i} \cap\left\{X_{1}, \ldots, X_{n}\right\}=C_{j} \cap\left\{X_{1}, \ldots, X_{n}\right\}\right)<\sum_{i<j}(1-\delta)^{n}=\binom{N}{2}(1-\delta)^{n} \tag{2}
\end{equation*}
$$

so that the probability $P(\mathcal{E}) \geq 1-\binom{N}{2}(1-\delta)^{n}$.
Now we note that if $n=\frac{2 \log N}{\delta}$, then there exists a set of n points from which \mathcal{C} can choose at least N distinct subsets. Indeed, by inequality (2), we have

$$
P\left(C_{i} \cap\left\{X_{1}, \ldots, X_{n}\right\} \text { are distinct }\right)>1-\binom{N}{2}(1-\delta)^{n} \geq 1-N^{2} e^{-\delta n}=1-N^{2} e^{-2 \log N}=0 .
$$

So the probabilistic method implies that at least some such set exists, i.e. that $\Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \geq$ N for some set $\left\{x_{i}\right\}_{i=1}^{n}$ by the definition of the shattering numbers.

Using the Sauer-Shelah lemma 2.1, we find that

$$
N \leq \Delta_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq \sum_{k=0}^{\mathrm{VC}(\mathcal{C})}\binom{n}{k} \leq d n^{d}
$$

where we have used $d=\mathrm{VC}(\mathcal{C})$. Rearranging, we have that the covering number N must satisfy

$$
\begin{equation*}
N \leq d\left(\frac{2 \log N}{\delta}\right)^{d} \quad \text { or } \frac{N}{\log ^{d} N} \leq d\left(\frac{2}{\delta}\right)^{d} \tag{3}
\end{equation*}
$$

We now argue that for any $\tau>0$, choosing a large enough constant $C=C(d)$ and $N \geq C(2 / \delta)^{d+\tau}$ contradicts this inequality. Indeed, rewriting the inequality with such an N, we have

$$
\frac{C}{\log ^{d}\left(C\left(\frac{2}{\delta}\right)^{2+\tau}\right)} \leq d\left(\frac{2}{\delta}\right)^{-\tau} \text { or } \frac{C^{\frac{1}{d}}}{\log C+(2+\tau) \log \frac{2}{\delta}} \leq d^{\frac{1}{d}}\left(\frac{2}{\delta}\right)^{-\frac{\tau}{d}}
$$

If this inequality fails for $\delta=1$ it fails for all $\delta<1$, so we must have

$$
\frac{C^{\frac{1}{d}}}{\log C+(2+\tau) \log 2} \leq d^{\frac{1}{d}} 2^{-\frac{\tau}{d}}
$$

Evidently taking $C \gg d 2^{-\tau}$ gives the desired contradiction. We obtain the theorem when we replace δ with ϵ^{r}.

References

[1] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York, 1996.

