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1 Introduction

In this note, we sketch a few properties of covering numbers, VC-dimension, and provide a few
pointers to more general resources for more detailed treatment of the results.

To define Vapnik-Chervonenkis dimension (VC-dimension), we begin by recalling the notion of
shattering a set of points. Give a set of points x1, . . . , xn ∈ X , we call a vector y ∈ {−1, 1}n a
labeling of the set {xi}. Then a collection of sets C ⊂ 2X , where C ∈ C are subsets of X , shatters
{xi} if for each labeling y1, . . . , yn of the points xi, there is a set C ∈ C such that

xi ∈ C for i s.t. yi = 1, xi 6∈ C otherwise. (1)

In general, we say C realizes the labeling y ∈ {−1, 1}n for {xi} if the containment (1) holds. The
collection C has VC-dimension VC(C) = d if the largest set of points x1, . . . , xn it shatters is of size
n = d. That is,

VC(C) = sup {n ∈ N : ∃ x1, . . . , xn s.t. C shatters {xi}ni=1} .

Put another way, if there is no set of points x1, . . . , xn+1 that C shatters, then VC(C) < n+ 1.
With this in mind, we follow van der Vaart and Wellner [1] and define the shattering number

of the points x1, . . . , xn as

∆n(C, x1, . . . , xn) := card {y ∈ {−1, 1}n s.t. C realizes y for {x1, . . . , xn}} .

Then an equivalent definition to the VC-dimension is that

VC(C) := sup
n

{
n : sup

x1,...,xn
∆n(C, x1, . . . , xn) = 2n

}
.

2 Sauer’s lemma

We now state a few results on VC-dimension, providing proofs of simplifications that make clearer
what is happening. Interestingly, VC-sets have at most polynomial growth in their shattering
numbers—as soon as a VC collection C cannot shatter any set of n points, the number of labelings
it can realize on the points is at most nVC(C) � 2n. This is the content of the Sauer-Shelah lemma.

Lemma 2.1 (Sauer-Shelah lemma). Let VC(C) <∞. Then

sup
x1,...,xn

∆n(C, x1, . . . , xn) ≤
VC(C)∑
k=0

(
n

k

)
.
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Proof Our proof follows an argument by Martin Wainwright. Define Ψk(n) :=
∑k

i=0

(
n
i

)
and

Φk(n) := sup
C:VC(C)≤k

sup
x1,...,xn

∆n(C, x1, . . . , xn)

in which case the assertion is equivalent to Φk(n) ≤ Ψk(n) for all k, n. We prove this by induction
on the sum n+ k.

For the base case of the induction, in which n = 0 or k = 0, the result is trivial—both
Φk(n) = Ψk(n) = 0. Taking n = 1, k = 1, we have certainly that Ψ1(1) = 2 and that there
are at most two labelings of a set with 1 element, so Φ1(1) = 2.

Now, assume that we know the result holds for all pairs (n, k) with n+ k < m for some m ∈ N.
Let n + k = m and let VC(C) = k for some collection of sets C. Now, for i ∈ {1, . . . , n} and a set
A = {x1, . . . , xn}, let A′ = A \ {x1} = {x2, . . . , xn}, and let C′ ⊂ C label A′ in as many ways as
possible, i.e.

C′ = argmax
C0⊂C

∆n−1(C0, x2, . . . , xn).

We claim that
∆n(C, A) = ∆n−1(C′, A′) + ∆n−1(C \ C′, A′).

Indeed, consider a binary labeling y ∈ {−1, 1}n of x1, . . . , xn that C realizes (recall definition (1)).
Then either its latter n− 1 components are realized by C′, or (by the maximality of C′, they are a
duplicate labeling and are realized by a unique set in C \ C′.

Now, of course, we have VC(C′) ≤ k, so that ∆n−1(C′, A′) ≤ Φk(n − 1) ≤ Ψk(n − 1) by the
induction hypothesis. We claim that VC(C \ C′) ≤ k − 1. Indeed, if C \ C′ shatters a set B ⊂ A′

then C must shatter B ∪ {x1}, and so we must have card(B) ≤ k − 1 because VC(C) = k, and
∆n−1(C \ C′, A′) ≤ Φk−1(n− 1) ≤ Ψk−1(n− 1), again by the induction hypothesis. Then we have

Ψk(n− 1) + Ψk−1(n− 1) =

k∑
i=0

(
n− 1

i

)
+

k−1∑
i=0

(
n− 1

i

)
=

k∑
i=0

(
n

i

)
,

which gives the result.

3 Covering numbers for VC-classes

VC-classes of sets have finite covering numbers in a very uniform sense, which allows substantial
control in concentration inequalities and uniform laws of large numbers. We begin by recalling the
definition of the covering N and packing M numbers of a set Θ with metric d as

N(Θ, d, ε) := inf
{
N : ∃ an ε-cover{θi}Ni=1 of Θ

}
and

M(Θ, d, ε) := sup
{
M : ∃ an ε-packing{θi}Mi=1 of Θ

}
,

where we recall an ε-packing satisfies d(θi, θj) > ε for all i, j. The following lemma is standard.

Lemma 3.1. For any ε > 0 and set Θ with metric d,

M(Θ, d, 2ε) ≤ N(Θ, d, ε) ≤M(Θ, d, ε).
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For a probability distribution P , we recall the definition of Lr(P ) norms on functions f : X → R
as

‖f‖Lr(P ) :=

(∫
|f(x)|rdP (x)

) 1
r

.

For a collection of sets C, we define the Lr(P ) metric between sets A,B ⊂ X by the distance
between their indicators, that is,

‖1A − 1B‖rLr(P ) =

∫
|1(x ∈ A)− 1(x ∈ B)|r dP (x).

We then define the covering numbers of a collection C with respect to this metric on sets, denoting
them by N(C, Lr(P ), ε). A classical result is then the following uniform control on covering numbers.

Theorem 1. Let C be a class of sets with VC(C) < ∞. Then there exist universal constants
C,K <∞ such that for all 0 ≤ ε < 1

N(C, Lr(P ), ε) ≤ C · VC(C)KVC(C)
(

1

ε

)rVC(C)
.

We do not prove this theorem in its full generality, referring to van der Vaart and Wellner [1,
Theorem 2.6.4] for the full proof (note that they use a slightly different definition of VC-dimension
than ours, which is shifted by 1).

We can, however, provide the following weaker theorem, which is a simplification of the preceding
result, and gives a flavor of the types of results one can demonstrate.

Theorem 2. Let C be a VC-class with VC(C) = d <∞. Then for any τ > 0, there exist universal
constants C,K <∞ (which may depend on τ) such that for all 0 ≤ ε ≤ 1

N(C, Lr(P ), ε) ≤ C ·Kd log d

(
1

ε

)rd+τ
.

Proof We provide the proof in three parts. First, we let C1, . . . , CN be a maximal δ = εr-packing
in the Lr(P ) norm, so that for X ∼ P we have

E[|1Ci(X)− 1Cj (X)|r] = E[|1Ci(X)− 1Cj (X)|] > δ = εr.

It is thus clear that N(C, εr, L1(P )) ≥ N(C, ε, Lr(P )), so we may thus focus on the L1 case with
the δ-packing. By Lemma 3.1, we thus have N(C, δ, L1(P )) ≤ N .

We now note that for X ∼ P , we have

P (X ∈ Ci and X ∈ Cj) < 1− δ,

because δ < E[|1Ci(X)− 1Cj (X)|] = 1−E[1Ci∩Cj (X)] = 1−P (X ∈ Ci, X ∈ Cj). By independence,

if X1, . . . , Xn
iid∼ P , we obtain

P (X1 ∈ Ci ∩ Cj , . . . , Xn ∈ Ci ∩ Cj) < (1− δ)n.

Now, let E denote the event that each Ci “picks out” a different subset of X1, . . . , Xn, that is, the
sets C1 ∩ {X1, . . . , Xn} are distinct. Then by a union bound, we have

P (Ec) ≤
∑
i<j

P (Ci ∩ {X1, . . . , Xn} = Cj ∩ {X1, . . . , Xn}) <
∑
i<j

(1− δ)n =

(
N

2

)
(1− δ)n, (2)
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so that the probability P (E) ≥ 1−
(
N
2

)
(1− δ)n.

Now we note that if n = 2 logN
δ , then there exists a set of n points from which C can choose at

least N distinct subsets. Indeed, by inequality (2), we have

P (Ci ∩ {X1, . . . , Xn} are distinct) > 1−
(
N

2

)
(1− δ)n ≥ 1−N2e−δn = 1−N2e−2 logN = 0.

So the probabilistic method implies that at least some such set exists, i.e. that ∆n(C, x1, . . . , xn) ≥
N for some set {xi}ni=1 by the definition of the shattering numbers.

Using the Sauer-Shelah lemma 2.1, we find that

N ≤ ∆n(C, x1, . . . , xn) ≤
VC(C)∑
k=0

(
n

k

)
≤ dnd,

where we have used d = VC(C). Rearranging, we have that the covering number N must satisfy

N ≤ d
(

2 logN

δ

)d
or

N

logdN
≤ d

(
2

δ

)d
. (3)

We now argue that for any τ > 0, choosing a large enough constant C = C(d) and N ≥ C(2/δ)d+τ

contradicts this inequality. Indeed, rewriting the inequality with such an N , we have

C

logd(C(2δ )2+τ )
≤ d

(
2

δ

)−τ
or

C
1
d

logC + (2 + τ) log 2
δ

≤ d
1
d

(
2

δ

)− τ
d

.

If this inequality fails for δ = 1 it fails for all δ < 1, so we must have

C
1
d

logC + (2 + τ) log 2
≤ d

1
d 2−

τ
d .

Evidently taking C � d2−τ gives the desired contradiction. We obtain the theorem when we re-
place δ with εr.
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