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In this note, we will describe a few consequences of the convergence theory for metric-space-
valued random variables that we have developed. We will describe a few convergence results, and
then we will use them to prove asymptotic normality of M -estimators based on possibly non-smooth
criterion functions.

As motivation for this exercise, we may consider the loss function

`θ(x) = |θ − x|

or, for some α ∈ (0, 1),
`θ(x) = (1− α) [θ − x]+ + α [x− θ]+ .

In both cases, the loss `θ(x) is not differentiable in θ everywhere, though it is differentiable for
almost every θ (or, conversely, for all x 6= θ). In the former case, the risk R(θ) := E[`θ(X)] is
minimized by the median of X, while the latter yields the α-quantile of X as its minimizers. In
each case, we might expect that if the random variable has a density near θ0 = argminθ R(θ),
then we we should have some type of differentiability. More generally, it is of course of interest to
understand the asymptotics of median and quantile estimators, as they are important quantities.

Let us begin with the less-basic theorem that guarantees asymptotic normality of M-estimators.
For this theorem, we require a few conditions on the loss `θ and the risk R(θ) := E[`θ(X)]. First, we
require that θ0 = argminθ R(θ) is unique, and that the risk R(θ) be twice differentiable at θ0 with
positive-definite Hessian ∇2R(θ0) � 0. We then require a few conditions on our losses. First, we
require that near θ0, they are locally Lipschitz: there exists a function ˙̀ : X → R+ with P ˙̀2 <∞
such that for all θ1, θ2 in a (small enough) ball around θ0,

|`θ1(x)− `θ2(x)| ≤ ˙̀(x) ‖θ1 − θ2‖ for all x ∈ X .

We also require that for P -almost all x ∈ X , the function θ 7→ `θ(x) is differentiable at θ = θ0 with
derivative ˙̀

θ0(x) = ∂
∂θ `θ(x)|θ=θ0 .

Theorem 1 (Theorem 5.23 [1]). Let the above conditions hold, and in addition, assume that

Pn`θ̂n ≤ inf
θ
Pn`θ + oP (1/n)

and that θ̂n is weakly consistent for θ0, meaning θ̂n
p→ θ0. Then

√
n(θ̂n − θ0) = −∇2R(θ0)

−1 · 1√
n

n∑
i=1

˙̀
θ0(Xi) + oP (1).
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Let us give one example of this theorem as applied to the quantile estimator.
Example 1 (Quantile estimation): Consider the loss function

`θ(x) := (1− α) [θ − x]+ + α [x− θ]+ ,

where α ∈ (0, 1). This loss is a convex function, and moreover, we see that for all θ1, θ2, we have

|`θ1(x)− `θ2(x)| ≤ |θ1 − θ2|,

so under the conditions of the theorem, ˙̀(x) ≡ 1 is sufficient. (The loss is certainly 1-Lipschitz
continuous.) A calculation, which you should do for yourself, shows that R(θ) = E[`θ(X)] is
minimized by the α-quantile of X, that is,

θ0 = QP (α) := inf {θ ∈ R | α ≤ P (X ≤ θ)} .

Now, let F (t) = P (X ≤ t) denote the CDF of X, and assume that X has a density f(x) in a
neighborhood of θ0, the α quantile. In this case, the α-quantile is unique, and the derivative

˙̀
θ0(x) = (1− α)1 {θ0 ≥ x} − α1 {θ0 ≤ x}

exists with P -probability 1 (that is, for P -almost every x). Then, as the density f of X exists near
θ0, we have that

R′(θ) = P ˙̀
θ = (1− α)P (θ ≥ X)− αP (θ ≤ X) = P (X ≤ θ)− α = F (θ)− α

for all θ near θ0. In this case, we may take a second derivative to obtain

R′′(θ0) = F ′(θ0) = f(θ0) > 0

and so we have the conditions of Theorem 1.
The consistency of θ̂n = argminθ Pn`θ may follow from many avenues, but Exercise 7.10 in our

collection of exercises shows one reasonably easy-to-apply possibility when the loss is convex in θ.
Thus, applying Theorem 1 yields

√
n
(
θ̂n − θ0

)
= − 1

f(θ0)
· 1√

n

n∑
i=1

[(1− α)1 {θ0 ≥ Xi} − α1 {θ0 ≤ Xi}]

d→N

(
0,
α(1− α)

f(θ0)2

)
.

When α = 1
2 , which corresponds to the median, we obtain the asymptotic variance 1

4f(θ0)2
. ♣

There are many other ways to discover the asymptotics of quantile-like estimators, including
infinite-dimensional analogues of the delta method, as in Chapters 20 & 21 of van der Vaart [1].

It is often interesting to compare median estimators of location, especially for symmetric distri-
butions, to other location estimators, such as mean estimators. Let us consider first the Gaussian

distribution, where f(x) = 1√
2π

exp(−1
2x

2). In this case, the median of a sample X1, . . . , Xn
iid∼

N(0, 1) satisfies
√
n(θ̂n − θ0)

d→N
(

0,
π

2

)
,
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which is less efficient than the mean, which of course satisfies
√
n(Xn − θ0)

d→N(0, 1). For the
Laplace (or double-exponential) distribution, the story is somewhat different. In this case, we have
density f(x) = 1

2e
−|x|, and the median estimator θ̂n satisfies

√
n(θ̂n − θ0)

d→N(0, 1),

while the variance of a Laplace random variable is 2, so that the sample mean satisfies
√
n(Xn −

θ0)
d→N(0, 2), which is half as efficient as the median.
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