
A few notes on contiguity, asymptotics, and local asymptotic

normality

John Duchi

March 1, 2021

Abstract

In this set of notes, I collect several ideas that are important for the asymptotic analysis of
estimators. I try to put them in a framework that is relatively easy to understand, so that this
can serve as a quick reference for further work. My treatment is based on a combination of Van
Der Vaart’s Asymptotic Statistics [3] and Le Cam and Yang’s Asymptotics in Statistics [2].
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Notation Here we collect notation. We will leave the underlying measure space implicit, though
Ω will usually be the sample space. We let B be a complete real-vector space, usually finite
dimensional though many of the results extend to Banach spaces. We say that a sequence of

random variables Xn ∈ B converges in distribution to a random variable X∞, written Xn
d→X∞,

if E[f(Xn)]→ E[f(X∞)] for all continuous bounded functions f : B→ R. We write

Xn
d→
Pn
X∞

if the laws of Xn are taken w.r.t. Pn.
We state one important and standard result before turning to our descriptions. In the theorem,

we say that Pn
d→P if random variables Xn ∼ Pn satisfy Xn

d→X, where X ∼ P .

Theorem 1 (Portmanteau Lemma). Let {Pn}n∈N, P be a sequence of measures defined on a com-
mon probability space (Ω,F). The following are all equivalent.

(i) Xn
d→X, where Xn ∼ Pn and X ∼ P

(ii) For all bounded continuous f , EPn [f ]→ EP [f ]

(iii) For all bounded, Lipschitz continuous f , EPn [f ]→ EP [f ]

(iv) For all non-positive upper semicontinuous f , lim supn EPn [f ] ≤ EP [F ]

(v) For all non-negative lower semicontinuous f , lim infn EPn [f ] ≥ EP [f ]

(vi) For all closed sets C, lim supn Pn(C) ≤ P (C)

(vii) For all open sets U , lim infn Pn(U) ≥ P (U)

(viii) For all continuity sets of P , that is, sets A such that P(bdA) = 0, limn Pn(A) = P (A)

1 Contiguity

In the first section, we discuss a number of results related to contiguity, which is essentially a way
to change measure asymptotically, and builds on ideas of absolute continuity that apply in non-
asymptotic situations. In brief, contiguity is useful for a number of ideas; the main two that we are
concerned with are

(i) Calculations of asymptotic power for tests under alternate distributions in hypothesis testing
problems, and locally worst-case alternatives

(ii) Asymptotic results on minimaxity and asymptotic normality

For now, this note studies mostly item (ii) above.

1.1 Absolute continuity

To begin with, we recall the definitions of absolute continuity. We say that a measure ν is absolutely
continuous with respect to a measure µ, written ν � µ, if for all (measurable) sets A, we have
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µ(A) = 0 implies ν(A) = 0. When this is the case, the Radon-Nikodym theorem guarantees that
there is some density g such that, for any ν-integrable function f , we have∫

fdν =

∫
fgdµ,

and we define the derivative dν
dµ = g. Now, let P and Q be probability distributions asymptotically

continuous with respect to a base measure µ (for example, µ = P + Q suffices). Let p = dP
dµ and

q = dQ
dµ . Then the Lebesgue decomposition thoerem states that we may decompose Q with respect

to P , that is, into two parts Q‖ and Q⊥ where Q = Q‖ +Q⊥ and

Q‖(A) = Q(A ∩ {p > 0}) and Q⊥(A) = Q(A ∩ {p = 0}). (1)

Then a standard result [3, Lemma 6.2] is that Q‖ � P , Q⊥ ⊥ P , and

Q‖(A) =

∫
A

q

p
dP for all measurable A.

Thus, it is natural to define dQ
dP = q

p = dQ‖

dP , which is defined P -almost surely. In addition, we have

Q� P if and only if Q({p = 0}) = 0, which again occurs if and only if
∫ q
pdP = 1.

Note that absolute continuity allows changes of measure, in the sense that if Q� P , then∫
fdQ =

∫
fqdµ =

∫
f
q

p
pdµ =

∫
f
dQ

dP
dP,

because Q‖ = Q. More generally, if we let Ω be the sample space and X : Ω → B be a random
vector, then the Q-law of X is available from the P -law of the pair (X, dQ/dP ) whenever Q� P ,
because

EQ[f(X)] = EP
[
f(X)

dQ

dP

]
.

Writing this in an evocative way for what follows, if we let M denote the joint measure (law) of
the pair (X,V ) where V = dQ

dP ∈ R+ under the distribution P , so that M is a measure on B×R+,
then

Q(X ∈ A) = EP
[
1 {X ∈ A} dQ

dP

]
= EP [1 {X ∈ A}V ] =

∫
A×R+

vdM(x, v). (2)

1.2 Contiguity basics

With the definitions of absolute continuity above, the next definitions (of contiguity) and results
should feel somewhat familiar, as they are (roughly) asymptotic ways of defining absolute continuity.
We first give a definition.

Definition 1.1. Let Pn and Qn be a sequence of probability measures on common probability spaces
Ωn. We say Qn is contiguous with respect to Pn, written Qn / Pn, if for any sequence of sets An
such that Pn(An)→ 0 we have Qn(An)→ 0. We say Pn and Qn are mutually contiguous, written
Pn /.Qn, if Pn / Qn and Qn / Pn.

We make a few remarks on this definition before giving Le Cam’s first lemma. If we let dQn
dPn

=

dQ
‖
n

dPn
as is our usual notational convention, where Qn = Q

‖
n +Q⊥n , then

EPn
[
dQn
dPn

]
= Qn({pn > 0}) ≤ 1,
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so that the sequence dQn
dPn
≥ 0 is uniformly tight under the sequence of laws Pn. In particular,

Prohorov’s theorem guarantees that for any subsequence of dQn
dPn

, there is a further subsequence
(denoted by n(k)) and random variable V ≥ 0 such that

dQn(k)

dPn(k)

d→
Pn(k)

V.

The next result should be somewhat intuitive, and is known as Le Cam’s first lemma. See
van der Vaart [3, Lemma 6.4] for a full proof, which relies on the Portmanteau and Prohorov
theorems.

Lemma 1.1 (Le Cam’s first lemma). Let Pn and Qn be sequences of probability measures on spaces
Ωn. Then the following are all equivalent.

(i) Qn / Pn.

(ii) If dPn
dQn

d→Qn U along a subsequence, then P(U > 0) = 1.

(iii) If dQn
dPn

d→Pn V along a subsequence, then E[V ] = 1.

(iv) For any random variables Tn, we have Tn
p→Pn 0, then Tn

p→Qn 0.

The result (i) if and only if (iv) is essentially definitional. For intuition that (i) and (ii) are
equivalent, note that if Qn / Pn, then any “asymptotically” zero mass set under Pn must also have
zero mass under Qn, which is to say, we must have dPn

dQn
> 0 with Qn probability arbitrarily near 1.

Thus U > 0 with probability 1. Similarly, if dPn
dQn

d→Qn U and P(U > 0) = 1, then we have that there
are no “asymptotic” sets with zero Pn mass but positive Qn mass, that is, Qn / Pn. The heuristic
argument for (i) iff (iii) is similar: if Qn � Pn, then defining Vn = dQn

dPn
we must have EPn [Vn] = 1

by definition, and similarly, Qn({pn > 0}) = 1 if and only if Qn � Pn. Thus Lemma 1.1 shows
that contiguity is truly an asymptotic version of absolute continuity.
Proof We only show (i) if and only if (iv). Let Tn

p→ 0 under Pn. Then if (i) holds and we
define An = {|Tn| ≥ ε}, where ε > 0 is arbitrary, we have Pn(An)→ 0 and thus Qn(An)→ 0. That

is, Tn
p→ 0 under Qn. The converse is similarly clear: let An be a sequence such that Pn(An)→ 0.

Define Tn = 1 if An occurs and 0 otherwise, so that Tn
p→Pn 0 and thus Tn

p→Qn 0, whence
Qn(An)→ 0.

The standard example application of Le Cam’s first lemma is to asymptotically Gaussian mea-
sures. As we see presently, this has strong connections to asymptotic normality and optimality of
verious estimation procedures.
Example 1 (Asymptotic log-normality): Let us suppose that Pn and Qn are sequences of measures
such that

dPn
dQn

d→
Qn
eZ where Z ∼ N(µ, σ2).

Then we claim that Qn / Pn, and also that Pn /.Qn if and only if µ = −1
2σ

2.
To see this, note that we certainly have Qn / Pn by Lemma 1.1(ii), because eZ > 0 with

probability 1 for Z ∼ N(µ, σ2). Now, we have E[eZ ] = eµ+ 1
2
σ2

, and this is 1 if and only if µ = −1
2σ

2,
and thus Pn / Qn by part (iii) of Lemma 1.1. 3
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1.3 Pairs of random variables and contiguity

As noted above, absolute continuity allows changes of measure from the pair of random variables
(X, dQdP ) under the measure P (recall expression (2)). This is also possible in an asymptotic sense,
which the following version of Le Cam’s Third Lemma makes precise.

Lemma 1.2. Let Qn / Pn and let Xn be a sequence of random variables satisfying(
Xn,

dQn
dPn

)
d→
Pn

(X,V ) ∈ B× R+.

Let M be the joint measure of the pair (X,V ) on B× R+. Then the set function

L(A) := E[1 {X ∈ A}V ] =

∫
A×R+

vdM(x, v)

defines a probability measure, and Xn
d→Qn Z for Z ∼ L.

Proof We know that V ≥ 0, and the joint convergence postulated in the lemma guarantees that
dQn
dPn

d→Pn V . Lemma 1.1(iii) guarantees that E[V ] = 1, so the function L is certainly a probability
measure. Now, let f ≥ 0 be a lower semicontinuous function. Then by the fact that f ≥ 0, we have
by definition of dQn/dPn that

EQn [f(Xn)] ≥ EPn
[
f(Xn)

dQn
dPn

]
.

The Portmanteau lemma (Theorem 1) then implies that

lim inf
n

EPn
[
f(Xn)

dQn
dPn

]
≥ EM [f(X)V ] =

∫
f(x)vdM(x, v)

(?)
=

∫
f(z)dL(z),

where equality (?) follows by definition of the measure L by integration against simple functions
1 {x ∈ A}. Thus lim infn EQn [f ] ≥ E[f(Z)] for Z ∼ L, and applying the Portmanteau lemma again
gives this lemma.

The powerful consequence of Lemma 1.2 is that it allows changes of measure asymptotically,
whcih has applications both asymptotically optimal estimators and tests. As the special case that
will be most important to us, we state an example (simply a special case of Lemma 1.2) what is
normally called Le Cam’s third lemma.
Example 2 (Le Cam’s Third Lemma): Let Pn, Qn be a sequence of measures and Xn ∈ B a
sequence of random variables, and assume that(

Xn, log
dQn
dPn

)
d→
Pn

N

([
µ
−1

2σ
2

]
,

[
Σ τ
τ> σ2

])
.

Then we claim that Xn
d→Qn N(µ+ τ,Σ).

To see this claim, note that the continuous mapping theorem implies(
Xn,

dQn
dPn

)
d→
Pn

(X,V ) where V = eZ and (X,Z) ∼ N

([
µ
−1

2σ
2

]
,

[
Σ τ
τ> σ2

])
.
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Thus Lemma 1.1(iii) (and the example 1 following) imply Pn /.Qn. Making the asymptotic change

of measure in Lemma 1.2, we have Xn
d→Qn Y for a random variable Y with law L defined by

L(A) = E[1 {X ∈ A} eZ ]. It thus remains to find the distribution of L, for which we use the
characteristic function. Indeed, by definition of L, we have for t ∈ B∗ and i =

√
−1 that∫

ei〈t,y〉dL(y) = E
[
ei〈t,X〉V

]
= E

[
ei〈t,X〉eZ

]
= E

[
exp

(〈[
it
1

]
,

[
X
Z

]〉)]
= exp

(
i 〈t, µ〉 − 1

2
σ2 − 1

2

[
t
−i

]> [
Σ τ
τ> σ2

] [
t
−i

])

= exp

(
i 〈t, µ+ τ〉 − 1

2
t>Σt

)
,

which is evidently the characteristic function of a N(µ+ τ,Σ)-distributed random vector. 3

This example is important, because it shows that if we (as is often the case) have a particular
type of asymptotic normality under a sequence of null distributions Pn, then we can view the
limiting random vector under alternatives Qn as being distributed N(µ + τ,Σ), with the same
covariance.

1.4 Distances on probability distributions

As a bit of an aside, which may help to motivate our discussion of quadratic mean differentiability,
we make here a few remarks on optimal testing errors and other techniques for proving bounds on
performance—i.e. guaranteeing that estimators or tests cannot distinguish between certain alterna-
tives. Our starting point is a standard result on the summed probabilities of error in a hypothesis
test, but first we define a few notions of distance between probability distributions.

Definition 1.2 (Distances between probability distributions). Let P and Q be probability distri-
butions with densities p and q with respect to a measure µ. The total variation distance between P
and Q is

‖P −Q‖TV := sup
A
|P (A)−Q(A)|.

The Hellinger distance between P and Q is defined by its square

d2
hel(P,Q) :=

1

2

∫
(
√
p−√q)2 dµ = 1−

∫
√
pqdµ.

There are a number of relationships between the variation distance and Hellinger distance (some
of which we explore in exercises), and we state a few as a lemma, leaving the proof to the reader.

Lemma 1.3 (Relationships between distances). Let P and Q be as in Definition 1.2. Then we
have the following equalities.

(a) ‖P −Q‖TV = 1
2

∫
|p− q|dµ

(b) ‖P −Q‖TV =
∫

(p ∨ q)dµ− 1 = 1−
∫

(p ∧ q)dµ

(c) sup‖f‖∞≤1

∫
f(dP − dQ) = 2 ‖P −Q‖TV.

In addition, the Hellinger distance and variation distance satisfy

d2
hel(P,Q) ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
2− d2

hel(P,Q).
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It is often more convenient to use the Hellinger distance for i.i.d. sampling schemes, because it
behaves substantially more nicely than does variation distance on product distributions. Indeed,
let Pn and Qn denote the n-fold products of P and Q. Then

d2
hel(P

n, Qn) = 1−
∫ √

p(x1) · · · p(xn)
√
q(x1) · · · q(xn)dµn

= 1−
(∫
√
pqdµ

)n
= 1−

(
1− d2

hel(P,Q)
)n
, (3)

where the final inequality follows because d2
hel(P,Q) = 1−

∫ √
pqdµ. Equality (3) makes clear that

if we know dhel(P,Q), then we can immediately calculate dhel(P
n, Qn).

With these definitions, we can give a few results on optimality of tests, as well as impossibility
results, which motivate a few of our coming local alternatives and asymptotic calculations. First,
we present a standard result, which we state as a lemma for convenient reference.

Lemma 1.4 (Le Cam). Let P0 and P1 be arbitrary distributions on a space X and consider the
simple hypothesis test of P0 against P1. For any test ψ : X → {0, 1}, we have

P0(ψ 6= 0) + P1(ψ 6= 1) ≥ 1− ‖P0 − P1‖TV ,

with equality if ψ(x) = 1 {p1(x) ≥ p0(x)}.

Proof Associated with any test is a rejection region, so let A = {x : ψ(x) = 0}. Then

P0(Ac) + P1(A) = 1− P0(A) + P1(A) = 1− (P0(A)− P1(A)) ≥ 1− sup
A
|P0(A)− P1(A)|.

The equality is immediate from Lemma 1.3.

If we consider a sequence of testing problems then, indexed by n, {P0,n}n∈N against {P1,n}n∈N,
then we see that the best possible error rate for testing P1,n against P0,n is governed by the limits
of ‖P0,n − P1,n‖TV. Now, note that the function x 7→ x

√
2− x2 is increasing on [0, 1], and increases

to 1. Then by Lemma 1.3, if all the cluster points of dhel(P0,n, P1,n) lie in the open interval (0, 1),
then evidently we have

1 > lim sup
n

inf
ψ
{P0,n(ψ 6= 0) + P1,n(ψ 6= 1)} ≥ lim inf

n
inf
ψ
{P0,n(ψ 6= 0) + P1,n(ψ 6= 1)} > 0.

That is, there is no perfect test, but there are tests whose average error rate is better than 50%.

1.5 Quadratic mean differentiability and local alternatives

As another heuristic, consider the case of local alternatives, where we compare testing the value
of a parameter θ, where the null is H0 : θ = θ0 and we have the sequence of alternatives H1 :
θ = θ0 + h/

√
n for some perturbation h. If we can show that dhel(P

n
θ0
, Pn

θ0+h/
√
n
) has some limit as

n→∞, then this would provide concrete bounds on the probability of error in tests, by Lemma 1.4.
To make this a bit more concrete, we consider Taylor expansions of

√
pθ that allow us to compute

such limits. First, recall that
√
a+ δ =

√
a + δ

2
√
a

+ O(δ2), and suppose that pθ is sufficiently

differentiable that we can write

pθ+h = pθ+∇θp>θ h+O(‖h‖2) and
√
pθ+h =

√
pθ +∇θp>θ h+O(‖h‖2) =

√
pθ+
∇p>θ h

2pθ

√
pθ+O(‖h‖2).
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Note that if `θ = log pθ is the log-likelihood, then ˙̀
θ = ∇pθ

pθ
is the score function and we have that

√
pθ+h =

√
pθ + 1

2h
> ˙̀

θ
√
pθ + O(‖h‖2) as long as the derivatives exist. Then, continuing with our

heuristics, we also have

d2
hel(Pθ, Pθ+h) =

1

2

∫ (√
pθ+h −

√
pθ
)2
dµ =

1

8

∫
( ˙̀>
θ h)2pθdµ+ o(‖h‖2) =

1

8
h>Iθh+ o(‖h‖2)

where Iθ is the Fisher Information for the model Pθ. That is, at least heuristically, we have that

d2
hel(Pθ, Pθ+h/

√
n) =

1

8n
h>Iθh+ o(‖h‖2 /n).

These calculations—and the optimality in testing they imply—motivate the following definition,
which makes the preceding calculations rigorous, but also allows us to require a Taylor expansion
of
√
pθ to exist only in mean-square (which is natural, because all we care about are distances

between distributions).

Definition 1.3. The family {Pθ}θ∈Θ of distributions on X is quadratic mean differentiable (QMD)
at θ ∈ Rd if there exists a score function ˙̀

θ : X → Rd such that∫ (
√
pθ+h −

√
pθ −

1

2
h> ˙̀

θ
√
pθ

)2

dµ = o(‖h‖2).

For a QMD family, we define Iθ =
∫

˙̀
θ

˙̀>
θ dPθ to be the Fisher information, which follows the usual

conventions for nicely structured probability distributions (such as exponential families; see van der
Vaart [3, Chapters 6–8]).

A calculation then shows the following lemma, which again we leave as an exercise for the
reader, but which shows that under i.i.d. sampling, it is hard to test between distributions getting
close to one another at a rate of 1/

√
n.

Lemma 1.5. Let the family {Pθ}θ∈Θ be quadratic mean differentiable and θ0 ∈ int Θ. Then for
any h ∈ Rd,

lim
n→∞

d2
hel(P

n
θ0 , P

n
θ0+h/

√
n) = 1− exp

(
−1

8
h>Iθ0h

)
.

Returning to Lemma 1.4, we then see that for any sequence {ψn} of tests, if the perturbation h is
bounded, so that exp(−1

8h
>Iθ0h) < 1, we have for a QMD family that

lim inf
n

{
Pnθ0(ψn 6= 0) + Pnθ0+h/

√
n(ψn 6= 1)

}
> 0.

Again, we leave verification of this as an exercise for the reader.
Quadratic mean differentiable families also generalize Fisher information in a natural way be-

yond pure differentiability of the likelihood function.

Proposition 1. Let the family {Pθ}θ∈Θ be quadratic mean differentiable. Then the score function
˙̀
θ is mean zero, Pθ ˙̀

θ = 0, and the Fisher Information Iθ := Pθ ˙̀
θ

˙̀>
θ exists.

Proof Letting pn = pθ+h/
√
n and p = pθ be the respective densities, and defining for simplicity

g = h> ˙̀
θ, we have by the definition of QMD that∫
n

(
√
pn −

√
p− 1

2
g
√
p/
√
n

)2

dµ = o(1) or

∫ (√
n(
√
pn −

√
p)− 1

2
g
√
p

)2

dµ = o(1).
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That is, we have
√
n(
√
pn −

√
p)

L2→ 1
2g (in L2(µ)-norm) and so (

√
pn −

√
p)

L2→ 0. Thus, we find
that

Pg =

∫
gpdµ =

∫
g
√
p
√
pdµ = 2 lim

n

∫ √
n(
√
pn−
√
p)
√
pdµ = lim

n

∫ √
n(
√
pn−
√
p)(
√
p+
√
pn)dµ,

the final equality a consequence of the L2(µ) limits of
√
pn−
√
p. But (

√
pn−
√
p)(
√
p+
√
pn) = pn−p,

and this integrates to zero always. So Pg = Pθh
> ˙̀

θ = 0 for all h, or Pθ ˙̀
θ = 0.

The existence of Pθ ˙̀
θ

˙̀>
θ is simpler. We have by the triangle inequality that

o(‖h‖) ≥

(∫ (
√
pθ+h −

√
pθ −

1

2
˙̀>
θ h
√
pθ

)2

dµ

) 1
2

≥
(

1

4

∫
( ˙̀>
θ h)2pθdµ

) 1
2

−
(∫ (√

pθ+h −
√
pθ
)2
dµ

) 1
2

=

(
1

4

∫
( ˙̀>
θ h)2pθdµ

) 1
2

−
√

2d2
hel(Pθ+h, Pθ).

As dhel ≤ 1 and h is arbitrary, this gives the result.

2 Local Asymptotic Normality

Now we begin to explore concepts that build off of the results on contiguity, but which make stronger
connections to normality theory. First, we begin by providing a definition of local asymptotic
normality; we give a slightly stronger definition than Le Cam’s classical definitions, but our efforts
to make things concrete allow (to us) more intuitive and somewhat easier proofs.

In the statement of the definition, we assume there is a sequence of spaces Ξn, where ξn ∈ Ξn,
and that for each n we have a family of probability measures Pθ,n indexed by θ ∈ Rd (or θ ∈ Θ ⊂ Rd).
We then consider local perturbations h of θ, where the local perturbations are at a scale of 1/

√
n,

so that they become “more” local at the rate n−
1
2 .

Definition 2.1. The family {Pθ,n}, defined for θ ∈ Θ and n ∈ N, is locally asymptotically normal
at the point θ if θ ∈ int Θ and there exists a mapping ∆n : Ξn → Rd and matrix K � 0 such that
for all h ∈ Rd and n large enough that θ + h/

√
n ∈ Θ,

log
dPθ+h/

√
n,n(ξn)

dPθ,n(ξn)
= h>∆n(ξn)− 1

2
h>Kh+ oPθ,n(‖h‖)

and
∆n(ξn)

d→
Pθ,n

N(0,K).

We call K the precision matrix for the family {Pθ,n}.

In Definition 2.1, we use oPθ,n(‖h‖) to mean a quantity that converes to zero in Pθ,n probability
as long as ‖h‖ is bounded.

9



2.1 Examples

Example 3 (Shrinking i.i.d. Gaussian locations): As a standard example of local asymptotic
normality, we may consider the simple model

Yi =
1√
n
h+ ξi, ξi

iid∼ N(0,Σ),

for i = 1, . . . , n. Letting θ = 0 for simplicity, we let Ph/
√
n,n be the distribution of Yi with mean

h/
√
n, and by inspection we have that

log
dPh,n(Y n)

dP0,n(Y n)
= h>Σ−1n

1
2Y n −

1

2
h>Σ−1h,

where Y n = 1
n

∑n
i=1 Yi. Certainly under P0,n, we have n

1
2Y n

d→N(0,Σ), and thus this model satisfies
Definition 2.1 with K = Σ−1 and ∆n(Y n) = ∆n(Y1, . . . , Yn) =

√
nΣ−1Y n. 3

Example 4 (Quadratic-mean-differentiable families): Recall that a family {Pθ}θ∈Θ is quadratic-
mean-differentiable if each element has density pθ with respect to some base measure µ, and there
is a score function ˙̀

θ such that∫ (
√
pθ+h −

√
pθ −

1

2
˙̀>
θ h
√
pθ

)2

dµ = o(‖h‖2).

By Propoosition 1, a QMD family has a Fisher information matrix, and the score function is mean
zero. We show that it is also locally asymptotically normal.

For notational simplicity, let P = Pθ and Pn = Pn
θ+h/

√
n
, that is, the base distribution Pθ and

its local alternative Pθ+h/
√
n (under i.i.d. sampling). We claim that

log
dPn(X1, . . . , Xn)

dP (X1, . . . , Xn)
=

1√
n

n∑
i=1

h> ˙̀
θ(Xi)−

1

2
h>Iθh+ oP (1), (4)

where Iθ = EP [ ˙̀
θ

˙̀>
θ ] denotes the Fisher information. That is, QMD families under local alternatives

are locally asymptotically normal with precision matrix Iθ, because n−
1
2
∑n

i=1
˙̀
θ(Xi)

d→Pθ N(0, Iθ).
Let us prove the claim (4); we use a Taylor expansion of the log-likelihood and definition of

QMD families to do so (our proof follows van der Vaart [3, Ch. 7]). First, we have

log
n∏
i=1

pn(Xi)

p(Xi)
=

n∑
i=1

2 log

√
pn√
p

(Xi) =
n∑
i=1

2 log

(
1 +

1

2

(
2

√
pn
p

(Xi)− 1

))
.

Now, define Wn,i = 2
√

pn
p (Xi)−1. Then a Taylor expansion of log(1+x) = x− 1

2x
2 +x2r(x) where

lim supx→0 |x−1r(x)| <∞ shows that

n∑
i=1

log
pn
p

(Xi) = 2
n∑
i=1

log

(
1 +

1

2
Wn,i

)
=

n∑
i=1

[
Wn,i −

1

4
W 2
n,i + 2W 2

n,ir(Wn,i)

]
. (5)

We consider each of these terms in turn.
For notational convenience, define g(x) = h> ˙̀

θ(x). First, we have that

VarP

(
n∑
i=1

Wn,i − n−
1
2

n∑
i=1

g(Xi)

)
≤ nEP

[
(Wn,1 − n−

1
2 g(X1))2

]
= no(‖h‖2 /n)→ 0

10



as n→∞, by the definition of QMD. Thus, we can write nW 2
n,i = g2(Xi)+En,i where E[|En,i|]→ 0

as n→∞, whence n−1
∑n

i=1En,i
p→ 0. Moreover, we have

nEP [Wn,1] = 2n

(∫
√
pnpdµ− 1

)
= −2nd2

hel(pn, p)
2 → −1

4
EP [g(X)2],

again by the definition of QMD. In particular,
∑n

i=1Wn,i = n−
1
2
∑n

i=1 g(Xi) − 1
4h
>Iθh + oP (1),

because EP [g2] = h>EP [ ˙̀
θ

˙̀>
θ ]h = h>Iθh. The law of large numbers, as a consequence of the

variance bound on
∑n

i=1Wn,i, implies

n∑
i=1

W 2
n,i

p→ Pg2 = h>Iθh.

The last quantity is to control the remainders in expression (5). Fix a constant ε > 0. We have
that

P(max
i≤n
|Wn,i| ≥ 2ε) ≤ nP(|Wn,1| ≥ 2ε) ≤ nP(g(Xi)

2 ≥ nε2) + nP(|En,i| ≥ nε2)

≤ ε−2P (g21
{
g2 ≥ nε

}
) + ε−2E[|En,i|]→ 0

as n→∞, by the fact that Pg2 <∞. Thus, we have maxi≤n |Wn,i| = oP (1) and so
∑n

i=1W
2
n,ir(Wn,i) ≤

maxi r(Wn,i)
∑n

i=1W
2
n,i = oP (1)OP (1) = oP (1). In combination with the expression (5), this yields

our desired claim (4). 3

Example 5 (Tilted distributions): We may provide a somewhat more complex example than
the preceding one. Suppose we have a base distribution P0 on a set Ξ, and let the random vector
X = X(ξ) ∈ Rd have mean-zero under P0 and finite second moment, where Σ = EP0 [XX>]. Now,
for h ∈ Rd, define the tilted measure

dPh(ξ) =

[
1 + h>X(ξ)

]
+

Ch
dP0(ξ) where Ch =

∫ [
1 + h>X

]
+
dP0.

Moreover, for ξn = (ξ1, . . . , ξn) ∈ Ξn, define the i.i.d. sampling measures

dPh/
√
n,n(ξn) =

n∏
i=1

dPh/
√
n(ξi).

We claim that this family is Locally Asymptotically Normal.
First, we claim that Ch = 1 + o(‖h‖22). To see this, note that Ch ≥

∫
(1 + h>X)dP0 = 1, and if

we define Ξh = {ξ : h>X(ξ) ≤ −1}, then

Ch =

∫ [
1 + h>X

]
+
dP0 =

∫
(1 + h>X)dP0 −

∫
Ξh

(1 + h>X)dP0

= 1 + EP0 [1{X>h ≤ −1}|1 + h>X|].

Notably, we have that if x>h ≤ −1, then |1 + x>h| ≤ |x>h| ≤ (x>h)2 ≤ ‖x‖2 ‖h‖2, whence

1

‖h‖2
1{X>h ≤ −1}|1 +X>h| ≤ ‖X‖2 1{X>h ≤ −1}.

11



Lebesgue’s dominated convergence theorem thus implies that

lim sup
h→0

1

‖h‖2
EP0 [1{X>h ≤ −1}|1 + h>X|] = 0,

because the term inside the expectation certainly converges to 0 as h→ 0.
Now we note the standard result that if a vector X has k moments, that is, E[‖X‖k] <∞, then

this is equivalent to
∑∞

n=1 P(‖Xn‖k ≥ n) <∞ where Xn are i.i.d. copies of X, so that

max
i≤n

n−
1
2 ‖X(ξi)‖

a.s.→P0 0

by the Borel-Cantelli theorem if Σ = EP0 [XX>] exists. Thus, for all h ∈ Rd, we have (uniformly
in ‖h‖ ≤ c for any constant c <∞) that

log
dPh/

√
n,n(ξn)

dP0,n(ξn)

=
n∑
i=1

log
[
1 + n−

1
2h>X(ξi)

]
+
− n logCh/

√
n

=
n∑
i=1

[
n−

1
2h>X(ξi)−

1

2
n−1h>X(ξi)X(ξi)

>h+ o(n−1 ‖h‖2 ‖X(ξi)‖2)

]
− n log

(
1 + o(n−1 ‖h‖2)

)
= h>

(
n−

1
2

n∑
i=1

X(ξi)

)
− 1

2
h>Σh+ oP0,n(‖h‖2).

Because n−
1
2
∑n

i=1X(ξi)
d→P0,n N(0,Σ), we see that the tilted family is indeed LAN. 3

2.2 Connections to contiguity and heuristics for normality

Now, let us make a few connections between Definition 2.1 and the contiguity results of the preceding
section. We assume without loss of generality that θ = 0 in the remainder of our results, because
everything simply shifts by this amount. Then Definition 2.1 shows that(

∆n(ξn), log
dPh/

√
n,n

dP0,n
(ξn)

)
d→

P0,n

N

([
0

−1
2h
>Kh

]
,

[
K Kh

(Kh)> h>Kh

])
, (6)

because E[ZZ>h] = Kh for Z ∼ N(0,K). By inspection, the convergence (6) is completely identical
to that in Le Cam’s Third Lemma, Example 2. Thus, we see that under the local alternative
distributions Ph/

√
n,n, we have the asymptotic shift

∆n(ξn)
d→

Ph/
√
n,n

N(Kh,K).

By defining the random variables

Zn(ξn) := K−1∆n(ξn), (7)

we have the similar asymptotic shift

Zn(ξn)
d→

Ph/
√
n,n

N(h,K−1).
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As this convergence occurs for any choice of the local perturbation h (because eventually, h/
√
n

is near enough zero that Ph/
√
n,n is well-defined), it is intuitive that there be some more general

type of “limiting normality” for problems involving estimation in P0,n. We can indeed make this
very rigorous in a number of ways. But before proceeding, we simply note the following simple
heuristic. Assuming that we would like to estimate the perturbation h in the sequence of local
models Ph/

√
n,n, we use Zn(ξn) to see that asymptotically, we would like to estimate the mean

(location) of a single normally distributed random vector N(h,K−1).

3 Limiting Experiments and Posterior Distributions under Local
Asymptotic Normality

With the preliminaries and definitions of local asymptotic normality presented, we now make rig-
orous the heuristic that the local alternatives Ph/

√
n,n should somehow result in asymptotically

“normal” estimation problems, or asymptotically normal distributions. We give two approaches,
one the more classical approach due to Le Cam (cf. [2]), which actually constructs asymptotic
posterior distributions for the parameter h in various Bayesian models, and the other due to Van
Der Vaart, which shows how the limits are a type of normal location experiment.

3.1 Asymptotic distributions—the Le Cam approach

Our first set of results study local asymptotic normality by providing explicit limiting distributions
and estimates of the posterior on h in various Bayesian settings, which we can then transform into
optimality guarantees.

We begin with a lemma, which is a simplification of a result due to Le Cam and Yang [2], to
allow more explicit distributional calculations.

Lemma 3.1 (Le Cam and Yang [2], Proposition 6.3.2). Let Zn be defined as in expression (7). Fix
c ∈ (0,∞) and ε > 0, and define

An,b := {ξn ∈ Ξn : ‖Zn(ξn)‖ ≤ b} .

There exist B = B(c, ε) and N = N(c, ε) such that b ≥ B and n ≥ N imply that

(i) If ‖h‖ ≤ c, then Ph/
√
n,n(An,b) ≥ 1− ε.

(ii) If we define the tilted measure

dQh,n(ξn) = exp

(
−1

2

[
(Zn(ξn)− h)>K(Zn(ξn)− h)− Zn(ξn)>KZn(ξn)

])
dP0,n(ξn),

then

lim
n

sup
h:‖h‖≤b

∫
1 {ξn ∈ An,b} |dQh,n − dPh/√n,n| = 0.

Proof We have by the joint contiguity Ph/
√
n,n /.P0,n that for suitably large B and N we have

Ph/
√
n(An,b) ≥ 1− ε, because P0,n(An,b)→ 1 as b, n→∞.

Let zn = Zn(ξn) for short, and let us use the implicit understanding that dP = dP (ξn) through-
out. For the second result, we note that by the local asymptotic normality assumption, we have

log
dPh/

√
n,n

dP0,n
= h>Kzn −

1

2
h>Kh+ oP0,n(‖h‖) and log

dQh,n
dP0,n

= h>Kzn −
1

2
h>Kh.
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Thus ∣∣∣∣dQh,ndP0,n
−
dPh/

√
n,n

dP0,n

∣∣∣∣ = exp

(
h>Kzn −

1

2
h>Kh

) ∣∣1− exp
(
oP0,n(‖h‖)

)∣∣
as n→∞, and since the first term is O(1) under P0,n, the previous display converges in probability
to zero under P0,n. Moreover, on the event An,b, we know that zn is bounded, and thus∫

1 {ξn ∈ An,b} |dQh,n − dPh/√n,n| =
∫

1 {ξn ∈ An,b}
∣∣∣∣dQh,ndP0,n

−
dPh/

√
n,n

dP0,n

∣∣∣∣ dP0,n → 0

as n→∞, and the convergence is uniform so long as ‖h‖ is bounded.

We now state our first major theorem, which is essentially equivalent to Proposition 6.4.4 of Le
Cam and Yang [2], though we give a few minor modifications that make its application, statement,
and proof simpler. In the theorem, we require a bit of notation. For matrices K,Γ � 0 with Γ � 0,
define the conditional distribution GK,Γ(· | z) as the normal distribution with mean (K+Γ−1)−1Kz
and covariance (K + Γ−1)−1 (i.e. precision matrix K + Γ−1), that is,

GK,Γ(A | z) = P(W ∈ A) for W ∼ N
(
(K + Γ−1)−1Kz, (K + Γ−1)−1

)
.

We shall see that in certain Bayesian settings, if the model family {Ph/√n,n} is locally asymptot-
ically normal with precision K, then the posterior distribution of h conditional on the data ξn is
approximately GK,Γ(· | Zn(ξn)), where Zn(ξn) = K−1∆n(ξn) as in expression (7).

For some intuition for why this result might appear, let us revisit Example 3, where we observe

Yi
iid∼ N(h/

√
n,Σ) for i ∈ [n]. This model is locally asymptotically normal with K = Σ−1 and

∆n = n
1
2 Σ−1Y n, or zn = n

1
2Y n. Then if we put the prior π on h defined by N(0,Γ), then the

posterior density

p(h | Y1:n) ∝ exp

(
−1

2
h>Γ−1h− n

2
(h/
√
n− Y n)>K(h/

√
n− Y n)

)
= exp

(
−1

2
(h− zn)>K(h− zn)− 1

2
h>Γ−1h

)
∝ exp

(
−1

2
(h− (K + Γ−1)−1Kzn)>(K + Γ−1)(h− (K + Γ−1)−1Kzn)

)
,

which is to say,

h | Y1:n ∼ N
(
(K + Γ−1)−1Kzn, (K + Γ−1)−1

)
= GK,Γ(· | zn).

Now, let us make rigorous the more general intuition that asymptotically, the posterior dis-
tribution of h should be Gaussian in locally asymptotically normal models. Let πΓ,c denote the
Gaussian distribution with mean 0 and variance Γ truncated to the region {h : ‖h‖ ≤ c}. Let
πΓ,c
n (· | ξn) denote the posterior distribution of h under the conditional model

h ∼ πΓ,c and ξn | h ∼ Ph/√n,n.

Assuming that Ph/
√
n,n is locally asymptotically normal with vector ∆n and precision K (Defini-

tion 2.1), we then have the following theorem.
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Theorem 2. Under the conditions of the above paragraph, let Zn = K−1∆n. Define the marginal
distributions

Pn :=

∫
Ph/
√
n,ndπ

Γ,c(h)

on Ξn. Then for any ε > 0, there exists C = C(ε) and N = N(ε) such that for c ≥ C and n ≥ N ,∫ ∥∥GK,Γ(· | Zn(ξn))− πΓ,c
n (· | ξn)

∥∥
TV

dPn(ξn) ≤ ε.

Theorem 2 is one particular way of saying that, asymptotically, Locally Asymptotically Normal
families have Gaussian posterior distributions, which means that estimation in an LAN family is
eventually identical to estimation of a parameter h from the Gaussian shift family N(h,K−1) as h
varies over Rd.
Proof Before beginning the proof proper, we state a convenient lemma, whose purely technical
proof we defer to Appendix A.1. To state the lemma, let M1 and M2 be finite positive measures
on the product space Ξ × Θ. Then under standard conditions, we may define the dis-integration
Mi(dξ, dθ) = νi(dξ)Mi(dθ | ξ), which is to say, simply writing the regular conditional probability
if Mi are probability measures, where Mi(· | ξ) is a probability measure for νi-almost all ξ. Then
it is possible to give bounds on the differences between the conditional (dis-integrated) measures
Mi(· | ξ) in terms of the differences between the joint measures, as the next lemma shows.

Lemma 3.2 (Le Cam and Yang [2], Lemma 6.4.2). Let the conditions of the previous paragraph
hold. Then ∫

‖M1(· | ξ)−M2(· | ξ)‖TV (dν1(ξ) + dν2(ξ)) ≤ 4 ‖M1 −M2‖TV .

Now we may proceed with the proof of our result. We define a few restricted probability
measures based on Lemma 3.1. Let c > 0 be as in the statement of the theorem. Also let An,b be
the high-probability sets in Lemma 3.1, so that Ph/

√
n,n(An,b) ≥ 1− ε for all sufficiently large b and

n whenever ‖h‖ ≤ c, and we know that zn = Zn(ξn) satisfies ‖zn‖ ≤ b on An,b. Then define the
restricted measures

P rest
h/
√
n,n(A) := Ph/

√
n,n(A ∩An,b).

These are nearly the same as Ph/
√
n,n, except they allow us to assume various random variables are

bounded.
We now define a series of joint distributions and tilted measures that approximate the true

distributions of ξn and h. For our joint measures—which we call M0,M1,M2,M3—we suppress
dependence on n for notational convenience. For all h we define the tilted measures

dQh,n(ξn) := exp

(
−1

2

[
(Zn(ξn)− h)>K(Zn(ξn)− h)− Zn(ξn)>KZn(ξn)

])
dP rest

0,n (ξn),

which are (by Lemma 3.1(ii)) essentially equivalent to dPh/
√
n,n: they satisfy

lim
n

sup
‖h‖≤c

∥∥∥Qh,n − P rest
h/
√
n,n

∥∥∥
TV

= 0. (8)

However—as we shall see—the posterior distributions of h under the “sampling” scheme Qh,n for
Zn are eventually Gaussian, which will yield the theorem. Let M0 be the true joint distribution on
the pair (h, ξn) under our truncated Gaussian prior, defined by

dM0(ξn, h) = dPh/
√
n,n(ξn)dπΓ,c(h).
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In addition, let M1 and M2 be the joint distributions on the pair (h, ξn) defined by

dM1(ξn, h) = dQh,n(ξn)dπΓ,c(h) and dM2(ξn, h) = dP rest
h/
√
n,n(ξn)dπΓ,c(h).

Because the support suppπΓ,c ⊂ {h ∈ Rd : ‖h‖ ≤ c}, the limit (8) immediately implies that M1

and M2 are close:

lim sup
n
‖M1 −M2‖TV ≤ lim sup

n

∫ ∥∥∥Qh,n − P rest
h/
√
n,n

∥∥∥
TV

dπΓ,c(h) = 0.

Moreover, we have that

‖M0 −M2‖TV ≤
∫ ∥∥∥P rest

h/
√
n,n − Ph/√n,n

∥∥∥
TV

dπΓ,c(h) =

∫
Ph/
√
n,n(Ξn \An,b)dπΓ,c(h) ≤ ε

for all sufficiently large n, by definition of the restricted measures and sets An,b from Lemma 3.1(i).
For our final joint measure, we consider the true Gaussian prior πΓ,∞, which is N(0,Γ), defining

dM3(ξn, h) = dQh,n(ξn)dπΓ,∞(h) (9)

= exp

(
−1

2
(h− (K + Γ−1)−1Kzn)>(K + Γ−1)(h− (K + Γ−1)−1Kzn) +

1

2
z>nKzn

)
dP rest

0,n (ξn),

where we used the shorthand zn = Zn(ξn) = K−1∆n(ξn). For any ε > 0, there is certainly a C
large enough that c ≥ C implies ‖πΓ,c − πΓ,∞‖TV ≤ ε. As a consequence, we have

2 ‖M1 −M3‖TV =

∫
|dQh,n(ξn)dπΓ,c(h)− dQh,n(ξn)dπΓ,∞(h)|

≤
(∫

Ξn
sup
h
dQh,n(ξn)

)∫
|dπΓ,∞(h)− dπΓ,c(h)|

=

∫ n

Ξ
exp

(
1

2
Zn(ξn)>KZn(ξn)

)
dP rest

0,n (ξn) · 2
∥∥πΓ,c − πΓ,∞∥∥

TV
.

But of course, by the definition of the restricted measure P rest, we know that Zn(ξn) is bounded
on the support of P rest

0,n , and thus the final expression has upper bound

‖M1 −M3‖TV ≤ O(1)
∥∥πΓ,c − πΓ,∞∥∥

TV
,

where the O(1) term depends only on the constant b in the high probability sets An,b of Lemma 3.1
(i.e. O(1) ≤ exp(1

2b
2 |||K|||)). In particular, for any ε > 0, we may choose c large enough in the prior

πΓ,c that lim supn ‖M1 −M3‖TV ≤ ε. Summarizing all of our preceding derivations, we see that for
any ε > 0, we may choose c large enough that

lim sup
n
‖Mk −Ml‖TV ≤ ε for k, l ∈ {0, . . . , 3}. (10)

Now, by inspection, we see that the posterior distribution of h under the joint measure M3 is

M3(· | ξn) = N
(
(K + Γ−1)−1KZn(ξn), (K + Γ−1)−1

)
= GK,Γ(· | Zn(ξn)).

Let πΓ,c(· | ξn) denote the posterior distribution on h as described in the theorem statement. Then
dM0(ξn, h) = dPn(ξn)dπΓ,c(h | ξn) by construction, and dM3(ξn, h) = dM3(ξn)dGK,Γ(h | Zn(ξn)).
Then the dis-integration result of Lemma 3.2 shows that∫ ∥∥GK,Γ(· | Zn(ξn))− πΓ,c(· | ξn)

∥∥
TV

dPn(ξn)

≤
∫ ∥∥GK,Γ(· | Zn(ξn))− πΓ,c(· | ξn)

∥∥
TV

(dPn(ξn) + dM3(ξn)) ≤ 4 ‖M0 −M3‖TV .
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But we know that the final quantity is eventually less than ε by inequality (10).

3.2 Limiting Gaussian experiments

JCD Comment: I will probably write this eventually. For now, van der Vaart [3,
Chapter 7] is a good reference, and gives an alternative approach to ours.

4 Efficiency of estimators and asymptotic minimax results

It is possible to provide a number of asymptotic efficiency results based on our characterizations of
local asymptotic normality. There are a few approaches to such results. One approach, following
Le Cam [2], provides Bayesian lower bounds that use strongly the asymptotic normality guarantees
above, as we can apply standard normality theory. The other, a slightly more abstract formulation
than ours, uses Van Der Vaart’s treatment of asymptotically normal families as limiting to normal
experiments.

For each of these techniques, we require a classical and important result due to Anderson [2, 3]
on optimal estimation of a Gaussian mean. Recall that a function L : Rk → R is quasi-convex if it
is bowl-shaped, that is, the sublevel sets

subα(L) := {x ∈ Rk : L(x) ≤ α}

are convex sets. A function L is symmetric if L(x) = L(−x) for all x. Let L : Rk → R be a
symmetric and quasi-convex function. A simple version of Anderson’s lemma is as follows.

Lemma 4.1 (Anderson). Let A ∈ Rd × Rk and let X ∼ N(µ,Σ), where X ∈ Rd. Then

inf
v∈Rk

E[L(AX − v)] = E[L(A(X − µ))] = E[L(AΣ
1
2W )]

for W ∼ N(0, Id×d), so that v = Aµ minimizes E[L(AX − v)].

A trivial consequence of Anderson’s lemma is that E[X] minimizes E[‖X − v‖22] over v, though of
course this is provable by other means. A less trivial consequence, however, is to take the function
L(x) = 1

2 ‖x‖
2
2∧B = min{1

2 ‖x‖
2
2 , B}, which is evidently quasi-convex and symmetric. Then again,

Anderson’s lemma shows that infv∈Rd E[‖X − v‖22 ∧B] = E[‖X − E[X]‖22 ∧B].

4.1 The Bayesian approach to asymptotic lower bounds

For our first theorem, we use the asymptotic posterior argument of Theorem 2 to apply Anderson’s
lemma in an estimation problem.

Theorem 3 (Local Asymptotic Minimax Theorem). Let L : Rd×R be a symmetric, quasi-convex,
and bounded function, and let Pθ0+u/

√
n,n be a locally asymptotically normal family of distributions

with precision matrix K. Then for any sequence of estimators θ̂n : Ξn → Θ

lim inf
c→∞

lim inf
n

sup
‖θ−θ0‖≤ c√

n

EPθ,n
[
L(
√
n(θ̂n − θ))

]
≥ E

[
L
(
K−

1
2W
)]
,

where W ∼ N(0, Id×d).
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In fact, an inspection of the proof shows that we may replace the supremum in the above limit
with an integral over prior measures πn,c that are absolutely continuous with respect to Lebesgue
measure and supported on {θ : ‖θ − θ0‖ ≤ c/

√
n}. Even more, we may take πn,c to be the Gaussian

distribution with mean θ0 and covariance 1
ε(c)nI, where ε(c) → 0 as c → ∞, truncated to values

‖θ − θ0‖ ≤ c/
√
n. That is,

lim inf
c→∞

lim inf
n→∞

inf
θ̂n

∫
EPθ,n

[
L(
√
n(θ̂n − θ))

]
dπn,c(θ) ≥ E

[
L
(
K−

1
2W
)]
, (11)

which is a stronger result than Theorem 3.
Proof Assume without loss of generality that L takes values in [0, 1]. We begin by noting that
we may replace the supremum over θ such that ‖θ − θ0‖ ≤ c/

√
n with a supremum over h : ‖h‖ ≤ c,

defining θ = θ0 + h/
√
n. Without loss of generality we take θ0 = 0. Then if we take priors πΓ,c to

be normal distributions N(0,Γ) truncated to ‖h‖ ≤ c, then

sup
‖θ−θ0‖≤ c√

n

EPθ,n
[
L(
√
n(θ̂n − θ))

]
≥
∫

EPh/√n,n
[
L(
√
n(θ̂n − h/

√
n))
]
dπΓ,c(h).

If we define Pn =
∫
Ph/
√
n,ndπ(h) and dπ(h | ξn) to be the posterior over h conditional on the

observation ξn under the prior πΓ,c, then the preceding expression has the further lower bound∫
E
[
L
(√

nθ̂n(ξn)− h
)
| ξn
]
dPn(ξn) ≥

∫
inf
ĥ
E
[
L(ĥ− h) | ξn

]
dPn(ξn). (12)

Now we apply Theorem 2 to the bound (12). We know that if GK,Γ(· | ξn) is the Gaussian
distribution N((K + Γ−1)−1Kzn, (K + Γ−1)−1), then for any ε > 0 and suitably large c and all
sufficiently large n (we may choose n after c), we have∫

Ξn

∥∥GK,Γ(· | ξn)− πΓ,c(· | ξn)
∥∥

TV
dPn(ξn) ≤ ε.

Adding and subtracting the expectation of L(ĥ− h) under the distribution GK,Γ(· | ξn) in expres-
sion (12), we have∫

inf
ĥ
E
[
L(ĥ− h) | ξn

]
dPn(ξn)

≥
∫

inf
ĥ
EGK,Γ

[
L(ĥ− h) | ξn

]
dPn(ξn)−

∫
sup
h,ĥ

|L(ĥ− h)|
∥∥GK,Γ(· | ξn)− πΓ,c(· | ξn)

∥∥
TV

dPn(ξn)

≥
∫

inf
ĥ
EGK,Γ

[
L(ĥ− h) | ξn

]
dPn(ξn)− sup

h,ĥ

|L(ĥ− h)|ε,

where we have applied Theorem 2. Applying Anderson’s Lemma 4.1 to the Gaussian GK,Γ, we
obtain ∫

inf
ĥ
E
[
L(ĥ− h) | ξn

]
dPn(ξn) ≥ E

[
L
(

(K + Γ−1)−
1
2W
)]
− ε (13)

where W ∼ N(0, Id×d), for all sufficiently large c and n.
Lastly, we note that if we take Γ = 1

εK
−1, then we have (K + Γ−1) = (1 + ε)K, and as ε→ 0,

we certainly have ((1 + ε)K)−
1
2W → W . Recalling that L is lower semi-continuous (see the Port-

manteau lemma) and that ε > 0 in expression (13) is arbitrary, taking Γ = 1
εK
−1 gives the final

result.
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4.2 Estimating functionals

In some cases, we may wish to estimate a function of the distribution at hand, which is a somewhat
different problem than just estimating the parameter. In the next section, we consider this in a
non-parametric sense, but in this section, we shall content our selves with estimating a smooth
function of the parameter θ.

Consider a function ψ : Θ → Rk, where Θ ⊂ Rd, and let ψ̇(θ) be its derivative matrix in
the sense that ψ(θ) = ψ(θ0) + ψ̇(θ0)(θ − θ0) + o(‖θ − θ0‖) for θ near θ0. Then we may claim the
following result, which is a minor extension of Theorem 3. In the corollary, we assume in that the
loss L is Lipschitz continuous, which is no real loss of generality but makes our proof simpler. We
also adopt the notation πn,c to be truncated Gaussian distributions centered at θ0 truncated to
‖θ − θ0‖ ≤ c/

√
n, where we show how to choose the covariance in the proof.

Corollary 4.1. In addition to the conditions of Theorem 3 around θ0, assume that L is Lipschitz
continuous. Then for any sequence of estimators ψ̂n : Ξn → Rk, we have

lim inf
c→∞

lim inf
n→∞

inf
ψ̂n

∫
EPθ,n

[
L(
√
n(ψ(θ)− ψ̂n))

]
dπn,c(θ) ≥ E

[
L(ψ̇(θ0)K−

1
2W )

]
for W ∼ N(0, Id×d).

Proof Let M(n, c) = inf
ψ̂n

∫
EPθ,n

[
L(
√
n(ψ(θ)− ψ̂n))

]
dπn,c(θ) denote the minimax quantity

on the left side of the corollary. Without loss of generality, we let θ0 = 0, and as in the proof of
Theorem 3, we let the priors πΓ,c denote Gaussian distributions N(0,Γ) truncated to ‖h‖ ≤ c. In
this case we have

M(n, c) = inf
ψ̂n

∫
EPh/√n,n

[
L(
√
n(ψ(h/

√
n)− ψ̂n))

]
dπΓ,c(h)

Using that L is Lip(L)-Lipschitz and writing ψ(h/
√
n) = ψ(0) + ψ̇(0)h/

√
n + [ψ(h/

√
n) − ψ(0) −

ψ̇(0)h/
√
n], we obtain

M(n, c) ≥ inf
ψ̂n

∫
EPh/√n,n

[
L(ψ̇(0)h− ψ̂n)

]
dπΓ,c(h)

− Lip(L)EπΓ,c

[∥∥∥√n(ψ(h/
√
n)− ψ(0)− ψ̇(0)h/

√
n)
∥∥∥ ∧ 1

Lip(L)

]
.

As n→∞, we have
√
n(ψ(h/

√
n)− ψ(0)− ψ̇(0)h/

√
n) =

√
no(‖h‖ /

√
n) = oP (1), so the last term

converges to 0. The remainder of the proof is identical to the proof of Theorem 3, as the function
v 7→ L(ψ̇(0)v) is symmetric, bounded, and quasi-convex.

4.3 Non-parametric estimation

In more general statistical problems, it may not make sense to assume the existence of a param-
eter uniquely identifying the distribution, in which case the previous derivations and notions of
optimality make less sense. In this case, it is a bit of a matter of taste exactly what “optimality”
means in terms of estimation, but there are a number of possible approaches. We follow one based
on choosing “hardest” (parametric) sub-models of a given family, which is also the approach taken

19



by Bickel et al. [1] and in the final chapter of van der Vaart [3], much of it based on joint work with
Susan Murphy. Our approach will be to consider (roughly) tilts of the distribution P by function
g ∈ L2(P ) with Pg = 0, which is one way of slightly perturbing the underlying distribution and
asking for optimality with respect to these small tilts.

As an example to motivate our considerations, consider the set P of all distributions on a sample

space X ⊂ Rd, and assume we observe data Xi
iid∼ P ∈ P and wish to estimate EP [X]. Certainly

the mean does not uniquely specify P , so the parametric results in the preceding sections say
little about this situation, but we intuitively believe that the empirical mean 1

n

∑n
i=1Xi should be

efficient and (at least asymptotically) optimal for estimation of EP [X]. A purely minimax analysis,
however, is not sufficient: let Q = (1 − ε)P + εδx, where δx denotes the point mass at x. Then
d2

hel(P
n, Qn) = 1− (1−d2

hel(P,Q))n and d2
hel(P,Q)2 ≤ ‖P −Q‖TV ≤ 2ε, so that we may take ε = 1

n
and obtain d2

hel(P
n, Qn) < 1−e−1, no procedure can consistently distinguish P and Q given n i.i.d.

observations, but the mean difference EP [X] − EQ[X] = ε(EP [X] − x) can be arbitrarily large by
taking x large.

With this motivation, we consider a different approach and attempt to define information ap-
propriately. We have a distribution P known to belong to some set P of distributions on X , and we
wish to estimate the value ψ(P ) of the function ψ : P → Rd at P . Our idea is to consider smooth
enough parametric sub-models P0 ⊂ P, where we let P0 = {Pθ | θ ∈ Θ} for some parameters θ,
and then apply the results of the preceding sections. By looking at the least favorable or “hardest”
sub-models, we can provide a theory of asymptotic normality.

4.3.1 Score functions and quadratic mean differentiability

Following van der Vaart [3], we consider 1-dimensional submodels that are appropriately quadratic
mean differentiable (QMD), as in Section 1.5 and Definition 1.3. Let the map t 7→ Pt, for 0 ≤ t <∞
(where P0 = P ) be QMD at t = 0 with score function g : X → R, that is, satisfying∫ (√

dPt −
√
dP − 1

2
tg
√
dP

)2

= o(t2), (14)

or, similarly,
∫

(
dP

1/2
t −dP 1/2

t − 1
2gdP

1/2)2 → 0 as t ↓ 0. A slightly more general version of Eq. (14)
is to consider g : X → Rk and h ∈ Rk near zero, and assuming∫ (√

dPh −
√
dP − 1

2
h>g
√
dP

)2

= o(‖h‖2). (15)

An immediate consequence of the convergence (15) is based on Proposition 1.

Lemma 4.2. Let the family {Ph} be QMD (15) for h ∈ Rk. Then Pg = 0, P ‖g‖2 < ∞, and the
family is locally asymptotically normal (Definition 2.1) with precision matrix K = Pgg>, that is,

n∑
i=1

log
dPh/

√
n

dP
(Xi) =

1√
n
h>

n∑
i=1

g(Xi)−
1

2
h>Pgg>h+ oP (‖h‖).

We call a function g above a score function, as in the parametric QMD situation, and by considering
a variety of sub-models, we obtain a collection of score functions that we denote by ṖP at P . Each
function in this family belongs to L2(P ) by Lemma 4.2.

Example 6 (Fully non-parametric models): The typical example of such a family is the fully
non-parametric setting, where we take the tangent set ṖP at P to be all functions g ∈ L2(P ) with
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Pg = 0. This is evidently the “maximal” tangent set, in that every score function must belong to
L2(P ) and satisfy Pg = 0. Concretely, we let the models be defined by tilts of the distribution P .
To motivate, the case in which supx |g(x)| <∞ allows us to define the tilted distribution

dPt(x) := (1 + tg(x))dP (x),

which (for small t > 0) is a valid distribution and satisfies
∫
dPt = 1. To handle all of L2(P ), we

tweak this slightly. Let φ : R→ [0, 2] be any function, C2 near 0, which we assume to be 1-Lipschitz,
with φ(0) = 1 and φ′(0) = 1, so that φ(t) = 1 + t+ o(t). As a simple example of such a φ, consider
φ(t) = min{2,max{1 + t, 0}}. Then we set

dPt(x) :=
1

c(t)
φ(tg(x))dP (x),

where c(t) is the normalizing constant. By Lebesgue’s dominated convergence theorem, we have

lim
t↓0

1

t

∫
[φ(tg(x))− (1 + tg(x))] dP (x) = φ′(0)

∫
g(x)dP (x) = 0,

as |φ(tg(x))− (1 + tg(x))|/t ≤ 2|g(x)|, so that c(t) = 1 + o(t). We also have that

∂

∂t
log dPt(x)

∣∣∣∣
t=0

= g(x),

and similarly that the score function of Pt is g in the QMD sense (14). 3

4.3.2 Influence functions and derivatives

Now, we consider the problem of actually estimating ψ(P ). We assume that ψ(Pt) is differentiable
at t = 0, as we cannot define appropriate notions of information for non-smooth functionals (in a
sense, if for some sub-model t 7→ Pt, the function t 7→ ψ(Pt) is not differentiable at t = 0, then
in a sense it is not smooth enough to estimate at typical 1/

√
n rates; for an exploration of this

phenomenon, see Exercise 11.2). More precisely, let us say that ψ : P → Rk is differentiable at the
point P relative to a tangent set ṖP (recall that Ṗ ⊂ {g : X → R, Pg = 0, Pg2 <∞) if there exists
a continuous linear map ψ̇P : L2(P )→ Rd with

lim
t→0

ψ(Pt)− ψ(P )

t
= ψ̇P (g)

whenever the model t 7→ Pt has score function g. Because L2(P ) is a Hilbert space and the bounded
linear functions on L2(P ) are isomorphic to L2(P ), the Riesz Representation Theorem implies there
must exist a vector-valued function function ∇ψP : X → Rd with

ψ̇P (g) :=

∫
∇ψP (x)g(x)dP (x).

It is no loss of generality to assume that ∇ψP is mean-zero, as each g is mean zero; we do this
without comment from this point on. There is a unique version of ∇ψP contained in the closure of
the linear span of ṖP , but we shall not concern ourselves with such issues except to assume that
∇ψP belongs to this span from now on.
Example 7 (Mean estimation): Let us consider the (perhaps) simplest problem of estimation of
the mean of a distribution P with VarP (X) < ∞. That is, ψ(P ) = EP [X]. In this case, we let
dPt(x) = 1

c(t)φ(tg(x))dP (x) as in Example 6, where g ∈ L2(P ) and Pg = 0. Then we have

EPt [X] =
1

c(t)

∫
φ(tg(x))xdP (x) =

∫
x(1 + tg(x))dP (x) + o(t)
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by the dominated convergence theorem, so that

ψ(Pt)− ψ(P )

t
→
∫
xg(x)dP (x),

which is evidently linear in g. Thus, the influence function in this case is simply ∇ψP (x) =
x− EP [X]. 3

Question 11.3 discusses another example of the appropriate influence functions for regression prob-
lems with squared loss, but without making any particular modeling assumptions so that the
distribution P is a nuisance parameter.

These influence functions are the fundamental quantity governing the convergence, and limiting
convergence rates, of estimates of parameters (or other quantities) in non-parametric or nearly
non-parametric problems. One can develop our parametric local asymptotic minimax theory using
these non-parametric influence functions, simply by considering the sub-models to be only those
parameterized by a desired function θ. Indeed, assuming the family P = {Pθ}θ∈Θ is QMD and
that Θ is convex, around a fixed θ0 ∈ int Θ we may consider sub-models, defined for t near 0 and
h ∈ Rd, of the form

Pt = Pth+θ0 ,

where for the function ψ(Pθ) = θ we evidently have

lim
t↓0

ψ(Pt)− ψ(P0)

t
= lim

t↓0

th

t
= h,

and the tangent set Ṗθ0 = {h> ˙̀
θ0 | h ∈ Rd} is the linear span of the usual score functions of the

parameter θ0. In this case, by inspection we have the influence function ∇ψ(x) := I−1
θ0

˙̀
θ0(x), where

Iθ0 is the Fisher information, because for score h> ˙̀
θ0(x) and Pt = Pth+θ0 , we obtain

lim
t→0

ψ(Pt)− ψ(P0)

t
= h = Eθ0

[
I−1
θ0

˙̀
θ0

˙̀>
θ0

]
h = I−1

θ0
Iθ0h = h.

In this case, Theorem 3 shows that E[L(Z)], where Z ∼ N(0,E[∇ψ∇ψ>]), is the local asymptotic
minimax lower bound on estimation of θ0.

4.3.3 A more general local asymptotic minimax theorem

One might hope that the influence functions also provide lower bounds for estimation in non-
parametric contexts; happily, this turns out to be the case. In the theorem, we let P be a collection
of distributions, ψ : P → Rd, and P ∈ P. Let ṖP be a tangent set to P , and assume that ψ is
differentiable at P relative to ṖP . We also let ∇ψ : X → Rd denote the influence function for ψ
at P . For simplicity in notation and a bit of a more compact result—as well as to avoid taking a
supremum that we find perhaps unsatisfying—given g1, . . . , gk ∈ Ṗ and h ∈ Rk, we let Ph denote
distributions based on the score function h>g(x) =

∑k
j=1 hjgj(x) in the QMD sense (15). We have

the following result.

Theorem 4. Let L : Rd → R be symmetric, quasi-convex, and bounded. There exist truncated,
mean-zero Gaussian distributions πn,c,k supported on {h ∈ Rk | ‖h‖ ≤ c/

√
n} such that the following

holds:

sup
k∈N

sup
g1,...,gk∈ṖP

lim inf
c→∞

lim inf
n→∞

inf
ψ̂n

∫
EPnh

[
L
(√

n(ψ̂n − ψ(Ph))
)]
dπn,c,k(h) ≥ E[L(Z)]

where Z ∼ N(0,EP [∇ψ(X)∇ψ(X)>]). Even more, the supremum over k ∈ N and g1, . . . , gk may
be replaced by the single choice g(x) = ∇ψ(x).
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Before giving the proof of the theorem, we revisit Example 7 to prove that the sample mean is
essentially an optimal estimator.
Example 8 (Mean estimation optimality): Consider again the setting of Example 7, where we
define dPt(x) = 1

c(t)φ(tg(x))dP (x) for g ∈ L2(P ) mean-zero and φ(t) = min{2, [1 + t]+}. In this

case, the influence function is simply the identity, ∇ψP (x) = x, and Theorem 4 then implies
that looking over all tilt perturbations of the distribution P , as in Example 6, we obtain a local
asymptotic minimax lower bound of

E[L(Z)] for Z ∼ N (0,CovP (X)) .

That the sample meanXn achieves this result is clear once we observe that
√
n(Xn−E[X])

d→N(0,CovP (X))
and apply Le Cam’s third lemma (Example 2) to obtain uniformity in perturbations Pg. 3

Proof of Theorem 4 For any fixed set of functions g1, . . . , gk, let g = [g1 · · · gk]>. Then we have
as in Corollary 4.1 that the family {dPh}h∈Rk is locally asymptotically normal with precision matrix
K = Pgg>, and moreover, we may redefined our function ψ by ψk : Rk → Rd with ψk(h) = ψ(Ph).
We then have the finite dimensional result

ψk(h) = ψk(0) + ψ̇k(0)h+ o(‖h‖) where ψ̇k(0) = EP
[
∇ψ(X)g(X)>

]
,

by definition of the influence function. Applying Corollary 4.1, then, we obtain that

lim inf
c→∞

lim inf
n→∞

inf
ψ̂n

∫
EPnh

[
L
(√

n(ψ̂n − ψ(Ph))
)]
dπn,c,k(h) ≥ E[L(ψ̇k(0)K−1/2W )]

for W ∼ N(0, I). (If K = Pgg> is not invertible, we replace K−1 with its pseudo-inverse.)
With this result, we note that

ψ̇k(0)K−1/2W ∼ N
(

0,EP [∇ψ(X)g(X)>]EP [g(X)g(X)>]−1EP [g(X)∇ψ(X)>]
)
.

We claim that for any random (possibly dependent) random vectors Z, Y that

E[Y Z>]E[ZZ>]†E[ZY >] � E[Y Y >]. (16)

Deferring the proof of the claim (16), note that it implies the covariance

EP [∇ψ(X)g(X)>]EP [g(X)g(X)>]−1EP [g(X)∇ψ(X)>] � EP [∇ψ(X)∇ψ(X)>].

By taking g(x) = ∇ψ(x), which is possible because we have E[∇ψ(X)] = 0 and ∇ψ belongs to
the closure of the linear span of ṖP by assumption (recall the discussion at the beginning of the
section), we find that it is possible to choose g : X → Rd such that

lim inf
c→∞

lim inf
n→∞

inf
ψ̂n

∫
EPnh

[
L
(√

n(ψ̂n − ψ(Ph))
)]
dπn,c,d(h) ≥ E[L(Z)], Z ∼ N(0,E[∇ψ(X)∇ψ(X)>]).

Using Anderson’s lemma (Lemma 4.1) and Claim (16) shows that this is the “worst” possible
covariance, giving the theorem except for the proof of our claim.

To see the claim (16), we may first assume without loss of generality that E[ZZ>] � I: indeed,
letting Σ = E[ZZ>]†, we have

E[Σ1/2ZZ>Σ1/2] = Σ1/2E[ZZ>]Σ1/2 = Σ1/2Σ†Σ1/2 � I,
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so to show inequality (16) it is sufficient to show that E[Y Z>]E[ZY >] � I for Z such that E[ZZ>] �
I. For this last inequality, let v be an arbitrary vector, and note by Cauchy-Schwartz that∥∥∥E[v>Y Z]

∥∥∥
2

= sup
‖u‖2≤1

E[(v>Y )(Z>u)] ≤
√

E[(v>Y )2] sup
‖u‖2≤1

√
E[(Z>u)]

2

≤
√
v>E[Y Y >]v.

This is equivalent to what we desired to show, giving the claim (16) and completing the proof.

24



A Proofs of technical results

A.1 Proof of Lemma 3.2

Let a, b, c, d ≥ 0, where we implicitly take a = dM1(θ | ξ), b = dν1(ξ), c = dM2(θ | ξ), and
d = dν2(ξ). Then the left integrand is

1

2

∫
Ξ

∫
Θ
|dM1(θ | ξ)− dM2(θ | ξ)|(dν1(ξ) + dν2(ξ)) =

1

2

∫
Ξ

∫
Θ
|a− c|(b+ d).

As

|a−c|(b+d) = |ab−cb|+|ad−cd| = |ab−cd+c(d−b)|+|ab−cd+a(d−b)| ≤ 2|ab−cd|+(a+c)|b−d|,

we immediately obtain that∫
‖M1(· | ξ)−M2(· | ξ)‖TV (dν1 + dν2)(ξ)

≤
∫

Ξ×Θ
|dν1(ξ)dM1(θ | ξ)− dν2(ξ)dM2(θ | ξ)|+ 1

2

∫
Ξ×Θ

(dM1(θ | ξ) + dM2(θ | ξ))|dν1(ξ)− dν2(ξ)|

≤ 2 ‖M1 −M2‖TV + 2 ‖ν1 − ν2‖TV ,

because
∫
dMi(θ | ξ) ≤ 1. Then noting that∫

Ξ
|dν1−dν2| =

∫
Ξ

∣∣∣∣∫
Θ
dM1(θ, ξ)−

∫
Θ
dM2(θ, ξ)

∣∣∣∣ ≤ ∫
Ξ

∫
Θ
|dM1(θ, ξ)−dM2(θ, ξ)| = 2 ‖M1 −M2‖TV

gives the final result.
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