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1 Introduction

In asymptotic statistics, uniform central limit theorems provide some of the most powerful gener-
alizations of the general limit theorem to infinite dimensional problems. Any convergence results
for infinite dimensional processes necessarily rely on some type of limiting compactness argument,
so that random vectors and processes are well-defined. To that end, it is important to understand
and quantify compactness of collections of functions.

The Arzelà-Ascoli theorem is a foundational result in analysis, and it gives necessary and
sufficient conditions for a collection of continuous functions to be compact. Recall that a metric
space (T, d) is compact if every open cover of T has a finite subcover, and that this is equivalent
to sequential compactness, that is, that any sequence {tn} ⊂ T has a convergent subsequence with
limit in T . We also recall that a set is relatively compact if its closure is compact. So, for example,
if every sequence {tn} ⊂ T for a metric space (T, d) has a convergent subsequence tn(k) with limit
t∞ = limk→∞ tn(k), but for which t∞ does not necessarily lie in T , then T is relatively compact (as
clT will be compact).

2 Equicontinuity

Let (T, d) be a compact metric space, where d is a metric on T , and let C(T,R) denote the collection
of continuous functions f : T → R, where the metric is the usual supremum norm, that is,

‖f − g‖∞ = sup
t∈T
|f(t)− g(t)| for f, g ∈ C(T,R).

Let F ⊂ C(T,R). Then the modulus of continuity of f is

ωf (δ) := sup
s,t∈T

{|f(t)− f(s)| : d(s, t) < δ} .

A function f is uniformly continuous if and only if limδ→0 ωf (δ) = 0. Making this uniform over a
collection of functions yields the following definition.

Definition 2.1. A collection of functions F is uniformly equicontinuous on T if

lim
δ→0

sup
f∈F

ωf (δ) = 0.

Equivalently, for every ε > 0, there exists a δ > 0 such that

sup
d(s,t)<δ

|f(s)− f(t)| ≤ ε for all f ∈ F .
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Noting that the supremum above extends over all pairs s, t ∈ T that are close together, we see that
the collection of functions F is uniformly continuous with the same “degree” of uniform continuity
for each f ∈ F . Of course, any continuous function on a compact set T is uniformly continuous, so
Definition 2.1 extends this in a uniform way to collections of functions.

One simple consequence of Definition 2.1 is that if a function class F is bounded at some t0 ∈ T ,
then it is bounded for all t ∈ T . Indeed, suppose that M ≥ supf∈F |f(t0)|. Fix any ε > 0 and choose
δ > 0 such that supd(s,t)<δ |f(s)− f(t)| < ε. The collection of open sets Ut := {s ∈ T : d(s, t) < δ}
covers T , and hence has a finite subcover {Uti}Ni=1. Then for any f ∈ F and t ∈ T , there is some
chain t → ti1 → ti2 → . . . → tik → t0 with k ≤ N and d(t, t′) < δ for each pair on the chain. We
thus have

|f(t)| ≤ |f(t)− f(t0)|+ |f(t0)| ≤ |f(t)− f(t1)|+ |f(tk)− f(t0)|+ |f(t0)|+
k−1∑
j=1

|f(tj)− f(tj+1)|

≤ ε+ ε+ |f(t0)|+ kε ≤ |f(t0)|+ (N + 2)ε. (1)

As f is arbitary, this shows the pointwise boundedness.

3 The theorem

It turns out that Definition 2.1 is precisely what is needed to show that collections of continuous
functions are compact.

Theorem 1. Let (T, d) be a compact metric space. Then F ⊂ C(T,R) is relatively compact if and
only if it is uniformly equicontinuous and for some t0 ∈ T we have supf∈F |f(t0)| <∞.

An equivalent statement to the theorem, which is what we in fact prove, is that the two statements

(i) Any sequence {fk} ⊂ F ⊂ C(T, d) has a convergent subsequence in the supremum norm

(ii) The collection F is uniformly equicontinous and pointwise bounded, i.e. supf∈F |f(t)| < ∞
for all t ∈ T

are equivalent. (In statement (i), that supf∈F |f(t0)| < ∞ is equivalent to supf∈F |f(t)| < ∞ for
all t ∈ T is a consequence of our calculation (1).)
Proof We begin by proving that (ii) implies (i). Let the collection F be uniformly equicontinuous
and pointwise bounded. Our proof follows a diagonalization argument. Let {fk}∞k=1 ⊂ F be a
sequence of functions. As T is compact it is separable (take finite covers of radius 2−n for n ∈ N,
pick a point from each open set in the cover, and let n → ∞). Let T 0 denote a countable dense
subset of T and fix an enumeration {t1, t2, . . .} of T 0. For each i define

Fi := {fk(ti)}∞k=1,

each of which is a bounded subset of R by the pointwise boundedness assumption.
We may then define a nested subsequence of functions {fk} ⊃ {f1k} ⊃ {f2k} ⊃ . . . as follows. Let

{f1k} ⊂ {fk} be any subsequence of fk for which fk(t1) converges as k →∞, which exists because
F1 is bounded. Similarly, {f2k} ⊂ {f1k} be any subsequence of {f1k} for which f1k (t2) converges;
generally, we let {fnk } ⊂ {f

n−1
k } be a further subsequence of {fn−1k } such that fn−1k (tn) converges.

Now, define the diagonal subsequence fn(k) = fkk . We show that fn(k) is Cauchy for the ‖·‖∞-norm
on T . Fix ε > 0, and let δ > 0 be such that supf∈F ωf (δ) < ε. The collection of open sets
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Ui := {t ∈ T : d(s, ti) < δ} for ti ∈ T 0 covers T , so that there is a finite subcover generated (w.l.o.g.
by re-ordering the ti) by t1, . . . , tN ∈ T 0. Let t ∈ T be arbitrary and note that d(t, ti) < δ for some
ti with i ≤ N . Then for any k, k′ we have

|fn(k)(t)− fn(k′)(t)| ≤ |fn(k)(t)− fn(k)(ti)|+ |fn(k)(ti)− fn(k′)(ti)|+ |fn(k′)(ti)− fn(k′)(t)|
≤ ε+ |fn(k)(ti)− fn(k′)(ti)|+ ε

by the uniform equicontinuity. But of course, there only finitely many ti, and so for large enough
k, k′, we have

max
i∈{1,...,N}

∣∣fn(k)(ti)− fn(k′)(ti)∣∣ ≤ ε.
These bounds may be taken independent of t, so that limk,k′→∞ ‖fn(k) − fn(k′)‖∞ = 0. The sequence
{fn(k)}k∈N ⊂ C(T,R) is thus Cauchy for the supremum norm on T and must converge to some
continuous function.

We now show how the existence of convergent subsequences (i) implies equicontinuity and
pointwise boundedness (ii). Note that the completion of F in the sup-norm is compact by the
equivalence of sequential compactness and compactness. First, the pointwise boundedness of F
is immediate: if F is compact, then Ft := {f(t)}f∈F must be bounded by the corresponding
compactness results on R (certainly all sequences within Ft must have a convergent subsequence).
We would like to show the unifrom equicontinuity result that limδ→0 supf∈F ωf (δ) = 0. First, note
that f 7→ ωf (δ) is Lipschitz in f : we have by the triangle inequality that

ωf (δ)−ωg(δ) = sup
d(s,t)<δ

|f(t)−f(s)|− sup
d(s,t)<δ

|g(t)−g(s)| ≤ sup
d(s,t)<δ

|f(t)−g(t)+f(s)−g(s)| ≤ 2 ‖f − g‖∞ ,

so that f 7→ ωf (δ) is 2-Lipschitz in ‖·‖∞-norm for any fixed δ > 0. Moreover, as T is compact,
we must have f ∈ C(T,R) uniformly continuous, so that ωf (n−1) → 0 as n → ∞ → 0. That
is, the pointwise limit of the sequence of functions hn(f) := ωf (n−1) as n → ∞ is the zero func-
tion. But the collection {hn} is (uniformly) Lipschitz, and the standard result that the pointwise
limit of uniformly Lipschitz functions on a compact set is the same as the uniform limit gives that
supf∈F hn(f) = supf∈F ωf (n−1)→ 0.
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