Only explorations

Chris Potts, Ling 230b: Advanced semantics and pragmatics, Spring 2016

May 18

(1) For \(\varphi : (\sigma_1, \ldots, \sigma_n, t) \), \([\text{only}_{(\sigma_1, \ldots, \sigma_n, t)} \varphi]^0 = [\text{only}_{<\text{st},t>} \varphi]^0 = \lambda x \forall \psi \in [\varphi]^t : \psi(x) = \psi = [\varphi]^0 \)

or (with no commitment to \(\varphi(x) \)):

\([\text{only}_{<\text{st},t>} \varphi]^0 = \lambda x \forall \psi \in [\varphi]^t : \psi(x) = \psi = [\varphi]^0 \)

could consider making \(\varphi(x) \) a presupposition

(2) a. Sandy only ran\textsubscript{FOC}.

\([\text{only ran}]^0 = \lambda x \forall \psi \in [\text{ran}_{\text{FOC}}]^t : \psi(x) = \psi = [\text{ran}_{\text{FOC}}]^0 \)

\([\text{Sandy only ran}]^0 = \forall \psi \in [\text{ran}_{\text{FOC}}]^t : \psi([\text{Sandy}]^0) = \psi = [\text{ran}_{\text{FOC}}]^0 \)

= For all alternatives \(\psi \) to running, if Sandy did \(\psi \), then \(\psi \) is running.

= If Sandy did anything relevant, it was running.

b. # Sandy only ran. (no accent anywhere)

Avenues to explore for blocking this kind of example:

* All sentences have at least one FOC-marked constituent.

* Only presupposes that the focus value of its argument has more than one member.

* Where only gets an argument that has a focus value with only one member, the resulting meaning is either equivalent to the meaning without only or strictly weaker than it, depending on how only is analyzed – both outcomes arguably clash pragmatically with using the particle.
(3)

a. Sandy only met\textsubscript{FOC} Jesse.
\[
[\text{only met}]^O = \lambda x \lambda y \forall \psi \in [\text{met}\textsubscript{FOC}]^f : \psi(x)(y) \Rightarrow \psi = [\text{met}\textsubscript{FOC}]^O
\]
\[
[\text{Sandy only met Jesse}]^O = \forall \psi \in [\text{met}\textsubscript{FOC}]^f : \psi([\text{Jesse}]^O)([\text{Sandy}]^O) \Rightarrow \psi = [\text{met}\textsubscript{FOC}]^O
\]
≈ If any salient relation holds between Sandy and Jesse, it is the meeting relation.
Alternative derivation where \textit{only} is assumed to adjoin to the VP \textit{met}\textsubscript{FOC} Jesse, rather than to just the verb:
\[
[[\text{met}\textsubscript{FOC} Jesse]^f = \{R([\text{Jesse}]^O) : R \in \text{ALT}(\text{met})\}
\]
\[
[\text{only met}\textsubscript{FOC} Jesse]^O = \lambda x \forall \psi \in [\text{met}\textsubscript{FOC} Jesse]^f : \psi(x) \Rightarrow \psi = [\text{met}\textsubscript{FOC} Jesse]^O
\]
\[
[[\text{Sandy only met}\textsubscript{FOC} Jesse]^O = \forall \psi \in [\text{met}\textsubscript{FOC} Jesse]^f : \psi([\text{Sandy}]^O) \Rightarrow \psi = [\text{met}\textsubscript{FOC} Jesse]^O
\]
≈ If Sandy has any salient property of the form \(R(Jesse) \), it is the property \(\text{met}(Jesse) \).
(These two readings are identical. Seeing that the first entails the second is straightforward. For the second entailing the first: assume the second is true, i.e., that \([\text{met}(Jesse)]\) is the only member of the focus value of the VP that holds of Sandy, and suppose that another salient relation \(R \neq [\text{met}] \) holds between Sandy and Jesse. Then, by the logic of alternative semantics, \(R \) is in the focus set for the VP. This contradicts our assumption.)

b. Sandy met only Jesse\textsubscript{FOC}.

Names have to be modeled as quantifiers. That is, we need to lift them to \textit{<et,t>}.
\[
[[\text{only Jesse}\textsubscript{FOC}]^f = \lambda g \forall \psi \in [[\text{Jesse}\textsubscript{FOC}]^f : \psi(g) \Rightarrow \psi = [[\text{Jesse}\textsubscript{FOC}]^f
\]
\[
[[\text{met only Jesse}\textsubscript{FOC}]^O = \lambda x \forall \psi \in [[\text{Jesse}\textsubscript{FOC}]^f : \psi(\lambda y [\text{met}]^O(y)(x)) \Rightarrow \psi = [[\text{Jesse}\textsubscript{FOC}]^O
\]
\[
[[\text{Sandy met only Jesse}\textsubscript{FOC}]^O = \forall \psi \in [[\text{Jesse}\textsubscript{FOC}]^f : \psi(\lambda y [\text{met}]^O(y)([\text{Sandy}]^O)) \Rightarrow \psi = [[\text{Jesse}\textsubscript{FOC}]^O
\]
≈ If Sandy met any salient alternative to Jesse, then it was Jesse.

c. Sandy only met Jesse\textsubscript{FOC}.

\[
[[\text{met Jesse}\textsubscript{FOC}]^f = \{\lambda x P(\lambda y [\text{met}]^O(y)(x)) : P \in \text{ALT(Jesse)}\}
\]
for proper names = \{[[\text{met}]^O(y) : y at alternative to Jesse}\}
\[
[[\text{only met Jesse}\textsubscript{FOC}]^O = \lambda z \forall \psi \in [[\text{met Jesse}\textsubscript{FOC}]^f : \psi(z) \Rightarrow \psi = [[\text{met Jesse}\textsubscript{FOC}]^O
\]
\[
[[\text{Sandy only met Jesse}\textsubscript{FOC}]^O = \forall \psi \in [[\text{met Jesse}\textsubscript{FOC}]^f : \psi([\text{Sandy}]^O) \Rightarrow \psi = [[\text{met Jesse}\textsubscript{FOC}]^O
\]
≈ If Sandy met any salient alternative to Jesse, then it was Jesse. Same outcome as in (b)!
(4)

a. \[\text{[introduce]}^0 = \begin{bmatrix} w_1 & \rightarrow & \{\langle a, b, c \rangle, \langle a, d, c \rangle \} \\
 w_2 & \rightarrow & \{\langle a, b, c \rangle, \langle a, b, d \rangle \} \end{bmatrix} \]

b. \(\alpha \) only introduced \(b_{\text{FOC}} \) to \(c \)

True in \(w_2 \), where \(\alpha \) introduced exactly one entity to \(c \), namely \(b \)
False in \(w_1 \), where \(\alpha \) introduced both \(b \) and \(d \) to \(c \)

c. \(\alpha \) only introduced \(b \) to \(c_{\text{FOC}} \)

False in \(w_2 \), where \(\alpha \) introduced \(b \) to both \(c \) and \(d \)
True in \(w_1 \), where \(\alpha \) introduced \(b \) to exactly one entity, namely \(c \)
Adapted from (Beaver & Clark 2008:§10):

(5) a. I really expected a suite but only got a single room with 2 beds.
 b. # I really expected a single room with 2 beds but only got a suite.

(6) a. Issue: What celebrity signatures did Brady get at the Philosophy of Language party?
 b. Brady only got a Soames
 c. Ranking (highest to lowest): ⟨Lewis, Putman, Soames, Beaver, Clark, Chomsky, Potts⟩

Some recent and foundational work on only

