Analyzing GWAS Data

- Each SNP is an independent test
- Associations are tested by comparing the frequency of each allele in cases and controls
- The frequency of each of 3 possible genotypes can also be compared

Table 3. Association of Alleles and Genotypes of rs6983267 on Chromosome 8q24 With Colorectal Cancer ${ }^{\text {a }}$
Number and Frequency of rs6983267 Alleles $\quad \begin{gathered}\text { Number and Frequency of rs6983267 } \\ \text { in Colorectal }\end{gathered}$ in Colorectal Cancer Genotypes in Colorectal Cancer

	C	T	$\chi^{2}(1 d f)$	P Value	OR	CC	CT	TT	χ^{2} (2df)	P Value	OR	OR
Cases	875 (56.5)	675 (43.5)	24.8	6.3×10^{-7}	$1.35{ }^{\text {b }}$	250 (32.3)	375 (48.4)	150 (19.4)	24.5	4.7×10^{-6}	$1.33^{\text {c }}$	$1.81^{\text {d }}$
Controls	1860 (48.9)	1940 (51.1)				460 (24.2)	940 (49.4)	500 (26.3)				

Abbreviation: OR, odds ratio.
a Data are hypothetical; adapted from Tomlinson et al. ${ }^{\text {.e }}$
Denotes alelic odds ratio.
${ }^{\text {C }}$ Denotes heterozygote odds ratio.
d Denotes homozygote odds ratio.

Odds ratios

- measure of effect size, or strength of association
- odds $=\mathrm{P} /(1-\mathrm{P})$
- Probability of winning is 50% :
\rightarrow odds is $0.5 /(\mathrm{I}-0.5)=\mathrm{I}(\mathrm{I}$ to $\mathrm{I}, 50: 50$,"even money")
- If probably of winning is 75%
\rightarrow odds is $0.75 /(\mathrm{I}-0.75)=3$
- Odds ratio = odds(event | exposure)
odds(event | lack of exposure)

Odds ratios

- $P(D \mid$ genotype "AT" $)=0.8$
- $P(D \mid$ genotype "TT") $=0.2$
- OR for getting the disease with genotype AT compared to TT

$$
\rightarrow \mathrm{OR}=(0.8 / 0.2) /(0.2 / 0.8)=16
$$

- What's the OR for AT individuals relative to an average population risk of 25% ?
$\rightarrow \mathrm{OR}=(0.8 / 0.2) /(0.25 / 0.75)=12$

Analyzing a SNP for association Allele Counting Method

Association of rs6983267 on 8q24 with colorectal cancer

	C	T	C is the risk allele$\begin{aligned} \text { ORc } & =\text { odds }(\text { disease } \mid C) / \text { odds }(\text { disease } \mid T) \\ & =875 * 1940 / 1860 * 675=1.35 \end{aligned}$
Cases	875 (56.5)	675 (43.5)	
Controls	1860 (48.9)	1940 (51.1)	

$\begin{array}{ll}\text { Cases } & \text { C alleles }=2 * 250 " \text { CC" }+375 " \text { CT" }=875 \\ & \text { T alleles }=2 * 150 " \text { TT" }+375 " C T "=675\end{array}$

Controls
C alleles $=2$ * 460 "CC" +940 "CT" = 1860
T alleles $=2 * 500$ "TT" +940 "CT" $=1940$

Analyzing a SNP for association Genotype Counting Method

Association of rs6983267 on 8q24 with colorectal cancer

	CC	CT	TT
Cases	250	375	150
Controls	460	940	500

C is the risk allele
$\mathrm{OR}_{\mathrm{TT}}=$ odds(disease $\left.\mid \mathrm{TT}\right) /$ odds(disease $\left.\mid \mathrm{TT}\right)=$ I
These ORs are all relative to TT (lowest-risk genotype) - not meaningful to apply to an individual
$\mathrm{OR}_{\mathrm{CT}}=\operatorname{odds}($ disease $\mid \mathrm{CT}) / \operatorname{odds}($ disease $\mid T T)=375 * 500 / 150 * 940=1.33$
ORcc $=$ odds $($ disease $\mid C C) /$ odds(disease $\mid T T)=250 * 500 / 460 * 150=1.8 \mid$

Analyzing a SNP for association Likelihood Ratios

Association of rs6983267 on 8q24 with colorectal cancer

	CC	CT	TT		
Cases	250	375	150		
Controls	460	940	500		
:---:	1900				

These LRs account for
genotype frequencies in the
population - can be directly
applied to an individual

$L_{c c}=P(C C \mid$ disease $) / P(C C \mid$ control $)=(250 / 775) /(460 / 1900)=1.33$
$L_{C T}=P(C T \mid$ disease $) / P(C T \mid$ control $)=(375 / 775) /(940 / 1900)=0.978$
$L_{T T}=P(T T \mid$ disease $) / P(T T \mid$ control $)=(150 / 775) /(500 / 1900)=0.735$

Analyzing a SNP for association Likelihood Ratios

Likelihood ratio = Probability of genotype in diseased person/
Probability of genotype in non-diseased person $=\mathrm{LR}_{\mathrm{i}}$

Pre-test odds = Probability of disease/1-Probability of disease

Pre-test odds $\times \mathrm{LR}_{1} \times \mathrm{LR}_{2} \times \ldots \times \mathrm{LR}_{\mathrm{n}}=$ Post-test odds
Post-test probability $=$ Post-test odds/Post-test odds +1

Analyzing a SNP for association Likelihood Ratios

A Myocardial infarction

Adjusting odds ratios

- GWAS most often report ORs relative to the low-risk allele or lowest-risk genotype
- To turn this into a meaning risk estimate, the prevalence of the disease and the genotype frequencies must be taken into account
- $P(D)=$ prevalence

$$
=P(D \mid A A) P(A A)+P(D \mid A a) P(A a)+P(D \mid a a) P(a a)
$$

(incorporate genotype frequencies)

Odds ratios to Probabilities

rs2383207 is associated with risk of myocardial infarction (from pre-course survey)

$$
P(D)=\text { Prevalence }=0.212=P(D I A A)^{*} P(A A)+P(D \mid A G)^{*} P(A G)+P(D \mid G G) * P(G G)
$$

From CEU HapMap population

$\mathrm{P}(\mathrm{AA})=$ frequency in population $=0.183$
$\mathrm{P}(\mathrm{AG})=$ frequency in population $=0.583$
$\mathrm{P}(\mathrm{GG})=$ frequency in population $=0.233$
$P(D \mid " A A ")=17.5 \%$ (low risk homozygote)
$P(D \mid " A G ")=$? (can be determined from equation above)
$P(D \mid " G G ")=24.8 \%$

ORGG $^{\prime}=$ odds(disease | GG) / odds(disease |AA)
$=(0.248 /(1-0.248)) /(0.175 /(1-0.175))=1.55$

OR* ${ }_{\text {GG }}=$ odds(disease | GG) / odds(disease in avg pop)
$=(0.248 /(I-0.248)) /(0.2 \mid 2 /(I-0.2 I 2))=1.22$
ORGG $^{\text {NOT (0.248/0.I75)!! }}$

These OR*s are relative to the average population - can be directly applied to an individual

Odds ratios to Probabilities

OR* (i.e., odds ratios relative to the average population) for each SNP can be multiplied together to combine effects from multiple SNPs (OR* ${ }_{S N P 1} \times O R *_{\text {SNP2 }} x$ OR*SNP3 ... = Total OR*)

Total OR* = odds(disease | all SNP genotypes) / odds(disease in avg pop)
MI/rs2383207 example:

```
if OR* = l.22 = odds(disease | genotype data) / odds(disease in avg pop)
    = [P(D | G) / (I - P(D | G)] / [0.2I2 / (I-0.2I2)]
```

let $x=P(D \mid G))$
$0.328=x /(1-x)$
$x=0.328 /(1+0.328)=0.248$
i.e.your probability of disease given the genotype data is 24.8%

Odds ratios to Probabilities

To integrate other non-genetic risk factors, just multiply by the corresponding odds ratios:
$O R^{*}{ }_{S N P 1} \times O R^{*}{ }_{S N P 2} \times O R^{*}{ }_{S N P 3} \times O R^{*}$ cholesterol $\times O R_{\text {exercise }}=$ Total gene + env $O R^{*}$
genetic risk environmental risk
Overall probability can be derived now as before:
Consider someone with low-risk SNPs but high-risk cholesterol or lifestyle factor
Total OR* $=0.80$ (genetic) $\times 4.0$ (environment) $=3.2$
OR* $=3.2$ = odds(disease | gene+env data) / odds(disease in avg pop)

$$
=[P(D \mid G+E \text { data }) /(I-P(D \mid G+E \text { data })] /[0.2 \mid 2 /(1-0.2 \mid 2)]
$$

let $x=P(D \mid G+E$ data $)$)
$0.861=x /(1-x)$
$x=0.86 I /(I+0.86 I)=0.46$
i.e. overall probability of disease given the genetic and environmental data is 46% ! (much higher than average population risk of 21.2% and that predicted by SNPs alone)

Diabetes Risk Calculation Exercise

Calculate the diabetes risk for 4 individuals using their genotype data using odds ratios vs. likelihood ratios

Note whether the two methods of risk estimation provide concordant or discordant results

What is the effect size of the 2-6 SNPs examined in this analysis? Relatively small or large? Would effect sizes of environmental risk factors be larger or smaller?

Patient I

European Female

Diabetes Risk for Personal Genotype

Population given was: CEU
Gender given was: female
Pre-test probability for Caucasian female is: 18.200% (Odds $=0.222$)

RSID	Genotype	Study Size	Odds Ratio*	Post-test odds (OR*)	Post-test probability (OR*)	Likelihood Ratio	Post-test odds (LR)	Post-test probability (LR)
Pre-test:				0.222	18.2\%		0.222	18.2\%
rs7903146	CC	69451	0.901	0.200	16.7\%	0.883	0.197	16.4\%
rs4402960	GT	11765	0.987	0.198	16.5\%	0.997	0.196	16.4\%
rs13266634	CC	6674	1.117	0.221	18.1\%	1.108	0.217	17.8\%
rs1801282	CC	2335	1.034	0.228	18.6\%	1.075	0.233	18.9\%
rs1111875	CT	1421	1.054	0.241	19.4\%	1.064	0.248	19.9\%
rs5219	CC	1034	1.007	0.242	19.5\%	0.940	0.233	18.9\%
Total:				0.242	19.5\%		0.233	18.9\%

Your Diabetes Risk

Patient 3

European Male

Diabetes Risk for Personal Genotype

Population given was: CEU
Gender given was: Male
Pre-test probability for Caucasian Male is: 23.700% (Odds $=0.311$)

RSID	Genotype	Study Size	Odds Ratio*	Post-test odds (OR*)	Post-test probability (OR*)	Likelihood Ratio	Post-test odds (LR)	Post-test probability (LR)
Pre-test:				0.311	23.7\%		0.311	23.7\%
rs7903146	TT	69451	1.571	0.488	32.8\%	1.667	0.518	34.1\%
rs4402960	TT	11765	1.056	0.515	34.0\%	1.057	0.547	35.4\%
rs13266634	CC	6674	1.067	0.550	35.5\%	1.108	0.606	37.7\%
rs1801282	CG	2335	0.707	0.389	28.0\%	0.897	0.543	35.2\%
rs1111875	CC	1421	1.011	0.393	28.2\%	1.081	0.587	37.0\%
rs5219	CC	1034	0.978	0.384	27.8\%	0.940	0.552	35.6\%
Total:				0.384	27.8\%		0.552	35.6\%

Your Diabetes Risk

Patient 4

European Female

Diabetes Risk for Personal Genotype

Population given was: CEU
Gender given was: female
Pre-test probability for Caucasian female is: $18.200 \%($ Odds $=0.222$)

RSID	Genotype	Study Size	Odds Ratio*	Post-test odds (OR*)	Post-test probability (OR*)	Likelihood Ratio	Post-test odds (LR)	Post-test probability (LR)
Pre-test:				0.222	18.2\%		0.222	18.2\%
rs7903146	CT	69451	1.027	0.229	18.6\%	1.088	0.242	19.5\%
rs4402960	GG	11765	0.993	0.227	18.5\%	0.992	0.240	19.4\%
rs13266634	CC	6674	1.117	0.253	20.2\%	1.108	0.266	21.0\%
rs1801282	CC	2335	1.034	0.262	20.8\%	1.075	0.286	22.2\%
rs1111875	TT	1421	0.934	0.245	19.7\%	0.625	0.179	15.2\%
rs5219	CT	1034	0.947	0.232	18.8\%	0.966	0.173	14.7\%
Total:				0.232	18.8\%		0.173	14.7\%

Your Diabetes Risk

Patient 6

Japanese Male

Diabetes Risk for Personal Genotype

Population given was: JPT
Gender given was: Male
Pre-test probability for Japanese Male is: 20.000% (Odds $=0.250$)

RSID	Genotype	Study Size	Odds Ratio*	Post-test odds (OR*)	Post-test probability (OR*)	Likelihood Ratio	Post-test odds (LR)	Post-test probability (LR)
Pre-test:				0.250	20.0\%		0.250	20.0\%
rs4402960	GG	3543	0.963	0.241	19.4\%	0.884	0.221	18.1\%
rs1111875	CC	3543	1.405	0.338	25.3\%	1.500	0.331	24.9\%
rs7903146	CT	2877	1.658	0.561	35.9\%	1.542	0.511	33.8\%
rs13266634	CT	1728	0.932	0.523	34.3\%	0.978	0.500	33.3\%
rs1801282	CC	None	Not found	-	-	Not found	-	-
rs5219	CT	None	Not found	-	-	Not found	-	-
Total:				0.523	34.3\%		0.500	33.3\%

Your Diabetes Risk

Patient 7

Chinese Male

Diabetes Risk for Personal Genotype

Population given was: CHB
Gender given was: Male
Pre-test probability for Chinese Male is: $20.000 \%($ Odds $=0.250)$

RSID	Genotype	Study Size	Odds Ratio*	Post-test odds (OR*)	Post-test probability (OR*)	Likelihood Ratio	Post-test odds (LR)	Post-test probability (LR)
Pre-test:				0.250	20.0\%		0.250	20.0\%
rs13266634	TT	2443	0.975	0.244	19.6\%	0.864	0.216	17.8\%
rs1111875	CT	1410	1.044	0.255	20.3\%	1.087	0.235	19.0\%
rs7903146	CC	None	Not found	-	-	Not found	-	-
rs1801282	CC	None	Not found	-	-	Not found	-	-
rs5219	TT	None	Not found	-	-	Not found	-	-
rs4402960	GT	None	Not found	-	-	Not found	-	-
Total:				0.255	20.3\%		0.235	19.0\%

Your Diabetes Risk

TABLE 1: PREDICTIONS FOR DISEASE RELATIVE RISKS FOR FIVE INDIVIDUALS

Disease	Female A	Female B	Female C	Male D	Male E
Breast cancer	$\uparrow \uparrow$	$\uparrow \uparrow$	$\downarrow \downarrow$		
Coeliac disease	$\downarrow \downarrow$				
Colon cancer	$==$	$==$	$=\downarrow$	$\uparrow \uparrow$	$=\downarrow$
Crohn's disease	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow=$
Heart attack	$\downarrow \downarrow$	$=\downarrow$	$=\downarrow$	$=\downarrow$	$\uparrow \uparrow$
Lupus	$\uparrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$	$\uparrow=$	$\uparrow=$
Macular degeneration	$\downarrow \downarrow$	$\downarrow \downarrow$	$\uparrow=$	$\downarrow \downarrow$	$\downarrow \downarrow$
Multiple sclerosis	$\uparrow \uparrow$		$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$
Prostate cancer				$\uparrow \uparrow$	$\downarrow \uparrow$
Psoriasis	$\downarrow \uparrow$		$\uparrow \downarrow$	$\uparrow \uparrow$	$\downarrow \downarrow$
Restless legs syndrome	$=\downarrow$	$\uparrow \uparrow$	$\downarrow=$	$\downarrow \uparrow$	$\uparrow \uparrow$
Rheumatoid arthritis	$\uparrow \uparrow$	$\uparrow \uparrow$	$\downarrow \downarrow$	$\downarrow \downarrow$	$\uparrow \uparrow$
Type 2 diabetes	$\downarrow \downarrow$	$=\downarrow$	$\downarrow \downarrow$	$\uparrow \downarrow$	$=\downarrow$
\uparrow lin		\downarrow		\downarrow	

\uparrow increased risk (RR > 1.05) , \downarrow decreased risk (relative risk (RR) < 0.95) , = average risk (0.95 $\leq R R \leq 1.05$). First prediction is from 23 and M e; second prediction is from Navigenics. Different predictions are highlighted in beige.

