CME / EE 103 Review Guide

Since the textbook and slides are very comprehensive, this review guide is designed to highlight some of the most important concepts of the course in a concise manner. Each chapter is summarized in less than a page, and many non-essential concepts were omitted. We hope this will help you prepare for the quiz exam.

1 Vectors

- We can write a vector in one of three ways

\[a = (1, 7, 3) = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} \]

- An \(n \)-vector is a vector with \(n \) entries (sometimes, we say this vector has length \(n \), but in some contexts length can mean other things). The \(i \)th entry of the \(n \)-vector \(x \) is denoted by \(x_i \).

 Caution: Sometimes \(x_i \) refers to the \(i \)th vector, instead of the \(i \)th entry of the vector \(x \). You will always be able to determine this from the context of the question.

- If \(a \) is a \(k \)-vector and \(b \) is a \(p \)-vector, we can define a block vector \(x = (a, b) \) of length \(k + p \).

- If \(x \) is an \(n \)-vector, then \(x_{i:j} = (x_i, ..., x_j) \) is a vector of length \(j - i + 1 \).

- A vector is called **sparse** if it has very few non-zero entries. The function \(\text{nnz}(x) \) returns the number of non-zero entries in \(x \). If \(\text{nnz}(x) \) is much smaller than the number of entries in \(x \), then \(x \) is sparse.

- Both 0 and 1 are vectors of undefined length, and we can generally infer their length from the context of the question.

- A **unit vector** \(e_i \) is a vector with one in its \(i \)th entry and zero in every other entry.

- The **inner product** \(a^T b \) between two \(n \)-vectors \(a \) and \(b \) is

\[a^T b = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \]

- Some important properties of the inner product include

 Commutativity: \(a^T b = b^T a \)

 Linearity: \(a^T (\alpha \cdot b + \beta \cdot c) = \alpha (a^T b) + \beta (a^T c) \) (where \(\alpha, \beta \) are scalars and \(a, b, c \) are \(n \)-vectors)

- A **linear combination** of \(n \)-vectors \(x_1, ..., x_k \) is a vector \(y \) defined by

\[y = \alpha_1 x_1 + \cdots + \alpha_k x_k \]

where \(\alpha_1, ..., \alpha_k \) are scalars.
2 Linear functions

- When we define a function \(f : \mathbb{R}^n \to \mathbb{R} \), we mean that the function \(f(x) \) has \(n \)-vectors as inputs, and scalars as outputs.
- A function \(f : \mathbb{R}^n \to \mathbb{R} \) is a linear function if and only if it satisfies
 \[
 f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
 \]
 for all \(n \)-vectors \(x, y \) and all scalars \(\alpha, \beta \).
- Equivalently, \(f \) is a linear function if and only if it \(f(x) = c^T x \) for some \(n \)-vector \(c \). The entries of \(c \) cannot depend on \(x \).
- If we know \(f \) is linear, the entries of \(c \) must be
 \[
 c = \begin{bmatrix}
 f(e_1) \\
 \vdots \\
 f(e_n)
 \end{bmatrix}
 \]
 be sure to understand why.

- A function \(f : \mathbb{R}^n \to \mathbb{R} \) is an affine function if and only if it satisfies
 \[
 f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
 \]
 for all \(n \)-vectors \(x, y \) and all scalars \(\alpha, \beta \) such that \(\alpha + \beta = 1 \).
- All linear functions are affine, but not all affine functions are linear.
- Equivalently, \(f \) is an affine function if and only if it \(f(x) = c^T x + b \) for some \(n \)-vector \(c \) and some scalar \(b \). The entries of \(c, b \) cannot depend on \(x \).
- If we know \(f \) is affine, we know \(b = f(0) \) and the entries of \(c \) must be
 \[
 c = \begin{bmatrix}
 f(e_1) - f(0) \\
 \vdots \\
 f(e_n) - f(0)
 \end{bmatrix}
 \]
 be sure to understand why.
3 Norm and distance

- The norm of an n-vector x is

$$\|x\| = \sqrt{x^T x} = \sqrt{x_1^2 + \ldots + x_n^2}$$

- Some important properties of the norm include

 - **Absolute homogeneity**: $\|\alpha x\| = |\alpha|\|x\|$ where α is a scalar.

 - **Cauchy-Schwarz**: $|x^T y| \leq \|x\|\|y\|$ (see the book for a proof)

 - **Triangle inequality**: $\|x + y\| \leq \|x\| + \|y\|$

- The distance between two n-vectors x and y is $\|x - y\|$.

- Some definitions you should know and understand

 - **Root mean square**:

$$\text{rms}(x) = \|x\|/\sqrt{n}$$

 where n is the number of entries in x.

 - **Average**:

$$\text{avg}(x) = \frac{1^T x}{n}$$

 where n is the number of entries in x.

 - **Angle**:

$$\theta = \cos^{-1} \left(\frac{x^T y}{\|x\|\|y\|} \right)$$

- For the following definitions, let $\tilde{x} = x - \text{avg}(x)1$. The vector \tilde{x} is often called the *demeaned* version of x.

 - **Standard deviation**:

$$\text{std}(x) = \text{rms}(\tilde{x})$$

 - **Correlation**:

$$\text{corr}(x, y) = \frac{\tilde{x}^T \tilde{y}}{\|\tilde{x}\|\|\tilde{y}\|}$$

Using Cauchy-Schwarz, we know $-1 \leq \text{corr}(x, y) \leq 1$.

3
4 Clustering

- The best resource for understanding the k-means algorithm is the k-means visualizer located here: http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
- Some rough psuedocode for the k-means algorithm:
 1. Choose k initial centroids z_1, \ldots, z_k.

 Repeat until (2) and (3) until convergence
 2. For each datapoint x_j, compute distances $\|x_j - z_1\|, \ldots, \|x_j - z_k\|$. Find the closest centroid, i.e. choose i to minimize $\|x_j - z_i\|$. Assign x_j to the group G_i.
 3. For each group G_i, let $x_{j_1}, \ldots, x_{j_{n_i}}$ be the vectors assign to group G_i. Set z_i to be the mean of these vectors, i.e.

$$z_i = \frac{x_{j_1} + \cdots + x_{j_{n_i}}}{n_i}$$
5 Linear independence

• Recall a linear combination of n-vectors \(x_1, \ldots, x_k\) is a vector \(y\) defined by

 \[y = \alpha_1 x_1 + \cdots + \alpha_k x_k \]

 where \(\alpha_1, \ldots, \alpha_k\) are scalars.

• A set of vectors \(a_1, \ldots, a_k\) are called linearly dependent if

 \[\beta_1 a_1 + \cdots + \beta_k a_k = 0 \]

 for some \(\beta_1, \ldots, \beta_k\) that are not all zero.

 – Another way of phrasing this is saying a set of vectors are linearly dependent if the zero vector can be formed as a linear combination of these vectors.

 – Caution: Linear dependence is a property of a set or collection of vectors, not of an individual vector.

• A set of vectors \(a_1, \ldots, a_k\) are called linearly independent if they are not linearly dependent. Equivalently, the expression

 \[\beta_1 a_1 + \cdots + \beta_k a_k = 0 \]

 only holds when \(\beta_1 = \cdots = \beta_k = 0\).

 – If \(x = \beta_1 a_1 + \cdots + \beta_k a_k\) and \(a_1, \ldots, a_k\) are linearly independent, then the coefficients \(\beta_1, \ldots, \beta_k\) used to form \(x\) are unique.

• A basis is a set of \(n\) linearly independent \(n\)-vectors.

 – If \(a_1, \ldots, a_n\) are a basis, then any \(n\)-vector can be written as a linear combination of \(a_1, \ldots, a_n\).

• The independence-dimension inequality states that any collection of \(n + 1\) or more \(n\)-vectors is linearly dependent.

• A collection of vectors \(a_1, \ldots, a_k\) is orthogonal if \(a_i^T a_j = 0\) whenever \(i \neq j\).

 – Orthogonal vectors are always linearly independent.

• A collection of vectors \(a_1, \ldots, a_k\) is orthonormal if it is orthogonal and \(||a_i|| = 1\) for \(i = 1, \ldots, k\).

 – If \(x\) is a linear combination of orthonormal vectors \(a_1, \ldots, a_k\) defined by \(x = \beta_1 a_1 + \cdots + \beta_k a_k\), then the coefficients are given by \(\beta_i = a_i^T x\)

• Given a set of vectors \(a_1, \ldots, a_k\), the Gram-Schmidt algorithm produces a set of orthonormal vectors \(q_1, \ldots, q_k\) or terminates early if \(q_1, \ldots, q_k\) are linearly dependent. The algorithm is roughly given by for \(i = 1, \ldots, k\)

 1. Orthogonalize: \(\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1}\)
 2. Test for dependence: if \(\tilde{q}_i = 0\), quit
 3. Normalize: \(q_i = \tilde{q}_i / ||\tilde{q}_i||\)