

Population Dynamics

Jenny Hong and Stephen Boyd

EE103
Stanford University

September 7, 2025

Outline

Population distribution

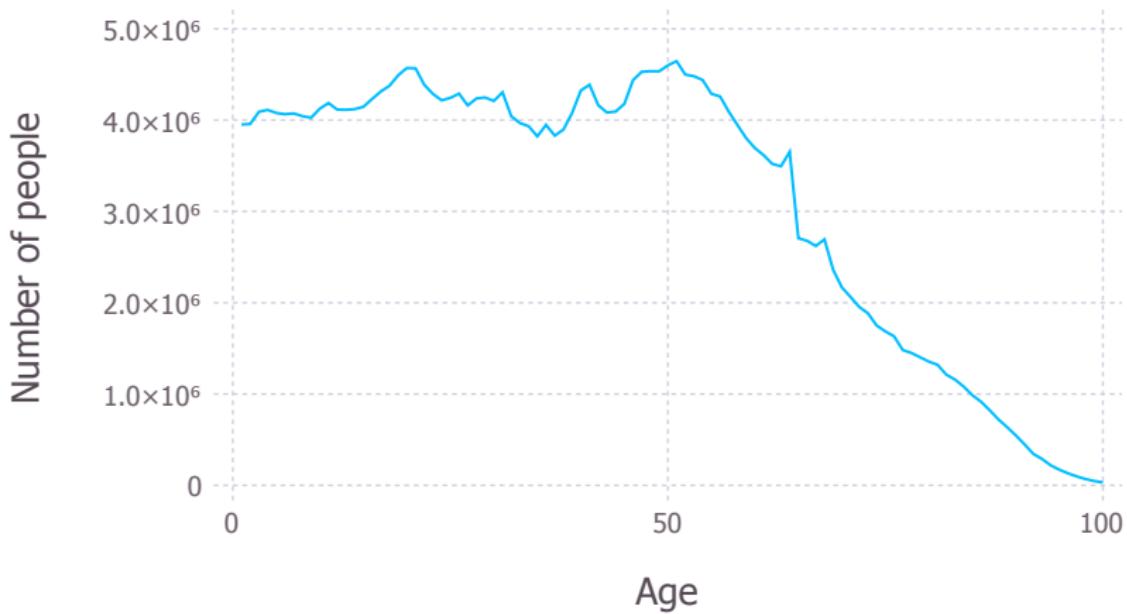
Dynamics

Population distribution

- ▶ $x_t \in \mathbf{R}^{100}$ gives population distribution in year $t = 1, \dots, T$
- ▶ $(x_t)_i$ is the number of people with age $i - 1$ in year t
(say, on January 1)
- ▶ total population in year t : $\mathbf{1}^T x_t$
- ▶ number of people age 70 or older in year t : $(0_{70}, \mathbf{1}_{30})^T x_t$

Population distribution of the U.S.

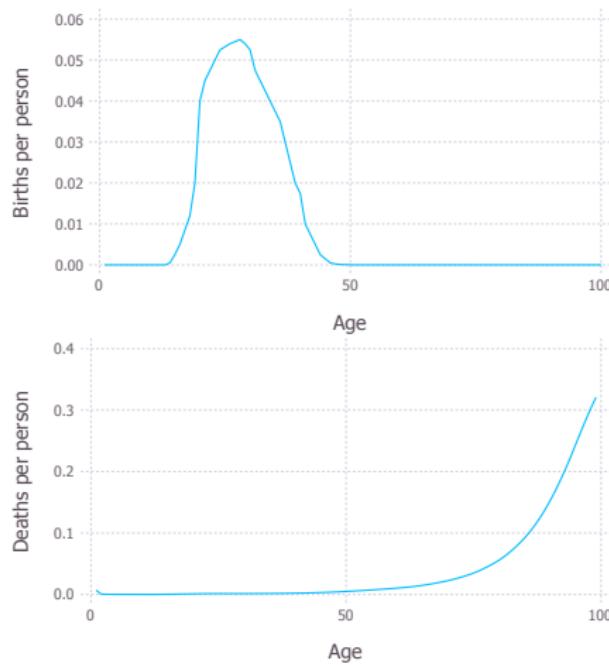
(from 2010 census)



Birth and death rates

- ▶ birth rate $b \in \mathbf{R}^{100}$, death (or mortality) rate $d \in \mathbf{R}^{100}$
- ▶ b_i is the number of births per person with age $i - 1$
- ▶ d_i is the portion of those aged $i - 1$ who will die this year
(we'll take $d_{100} = 1$)
- ▶ b and d can vary with time, but we'll assume they are constant

Birth and death rates in the U.S.



Outline

Population distribution

Dynamics

Dynamics

Dynamics

- ▶ let's find next year's population distribution x_{t+1} (ignoring immigration; we'll add that later)
- ▶ number of 0-year-olds next year is total births this year:

$$(x_{t+1})_1 = b^T x_t$$

- ▶ number of i -year-olds next year is number of $(i-1)$ -year-olds this year, minus those who die:

$$(x_{t+1})_{i+1} = (1 - d_i)(x_t)_i, \quad i = 1, \dots, 99$$

- ▶ $x_{t+1} = Ax_t$, where

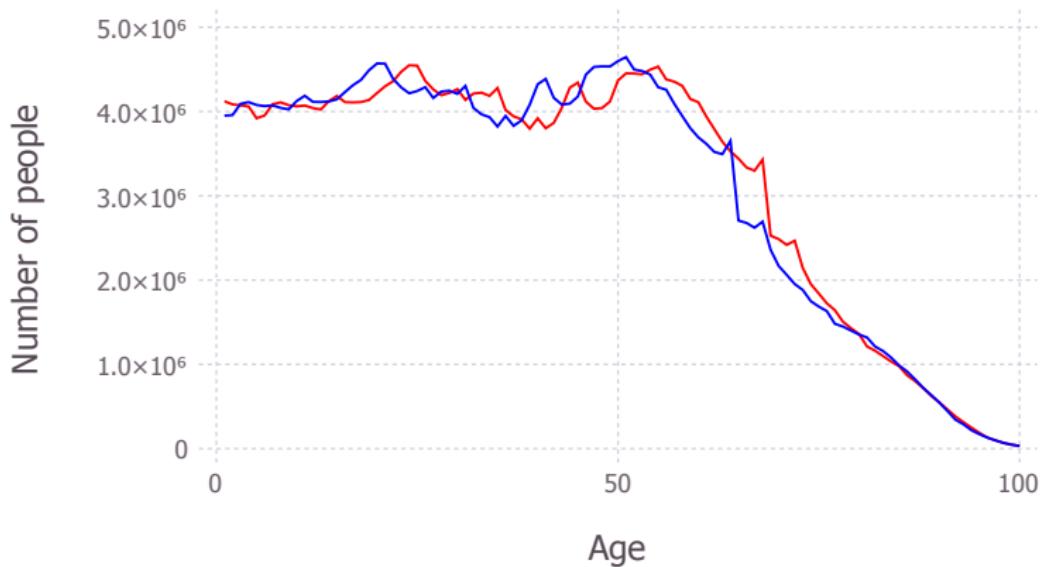
$$A = \begin{bmatrix} b_1 & b_2 & \cdots & b_{99} & b_{100} \\ 1 - d_1 & & & \cdots & 0 \\ 0 & 1 - d_2 & & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & & 1 - d_{99} & 0 \end{bmatrix}$$

Dynamics

- ▶ to predict distribution s years in the future: $x_{t+s} = A^s x_t$
- ▶ A^s propagates current population distribution s years forward
- ▶ to predict total population s years in future: $\mathbf{1}^T x_{t+s} = \mathbf{1}^T A^s x_t$
- ▶ what do the entries of the row vector $\mathbf{1}^T A^{10}$ mean?

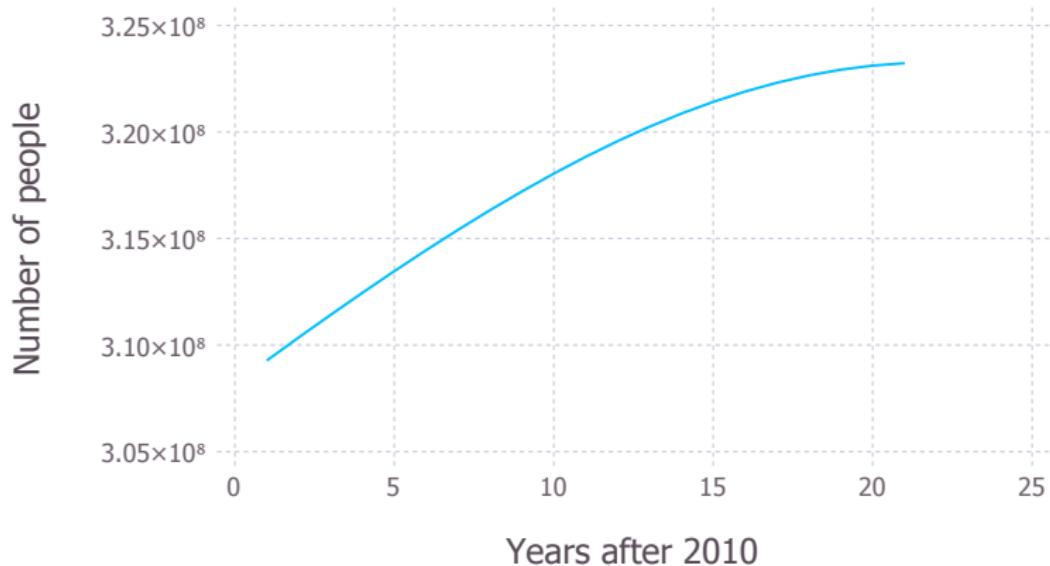
Predicting future population distributions

predicting U.S. 2015 distribution from 2010 (ignoring immigration)



Predicting population growth

predicted population growth (ignoring immigration)



Initial population distributions

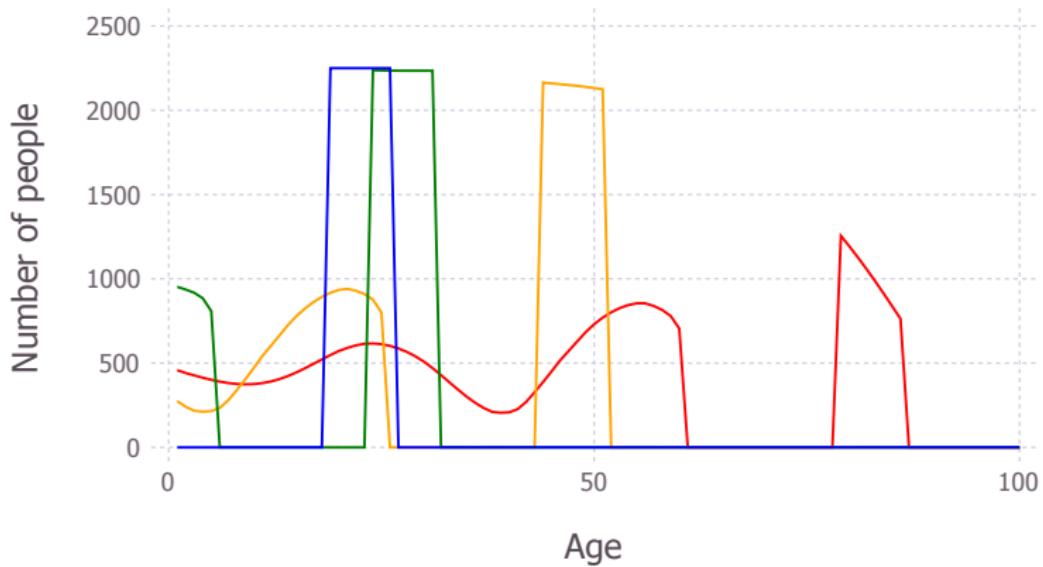
- ▶ what if we changed x_0 ?
- ▶ instead of U.S. Census data, let's use a “college nation”

$$(x_0)_i = \begin{cases} 2200 & i = 19, 20, \dots, 27 \\ 0 & \text{otherwise} \end{cases}$$

(approximate population distribution of Stanford students)

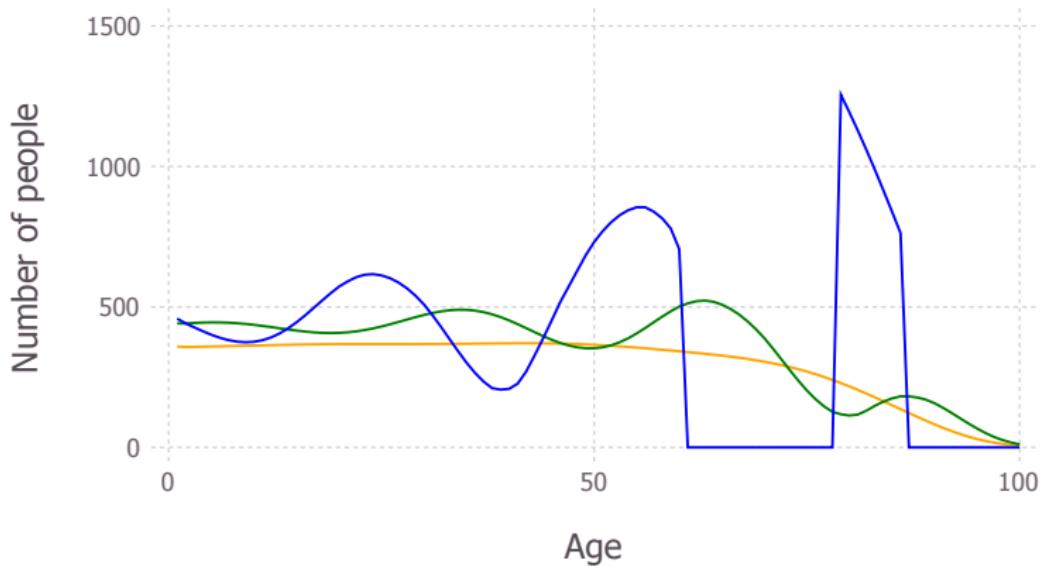
Predicting future population distributions

predict s years into the future

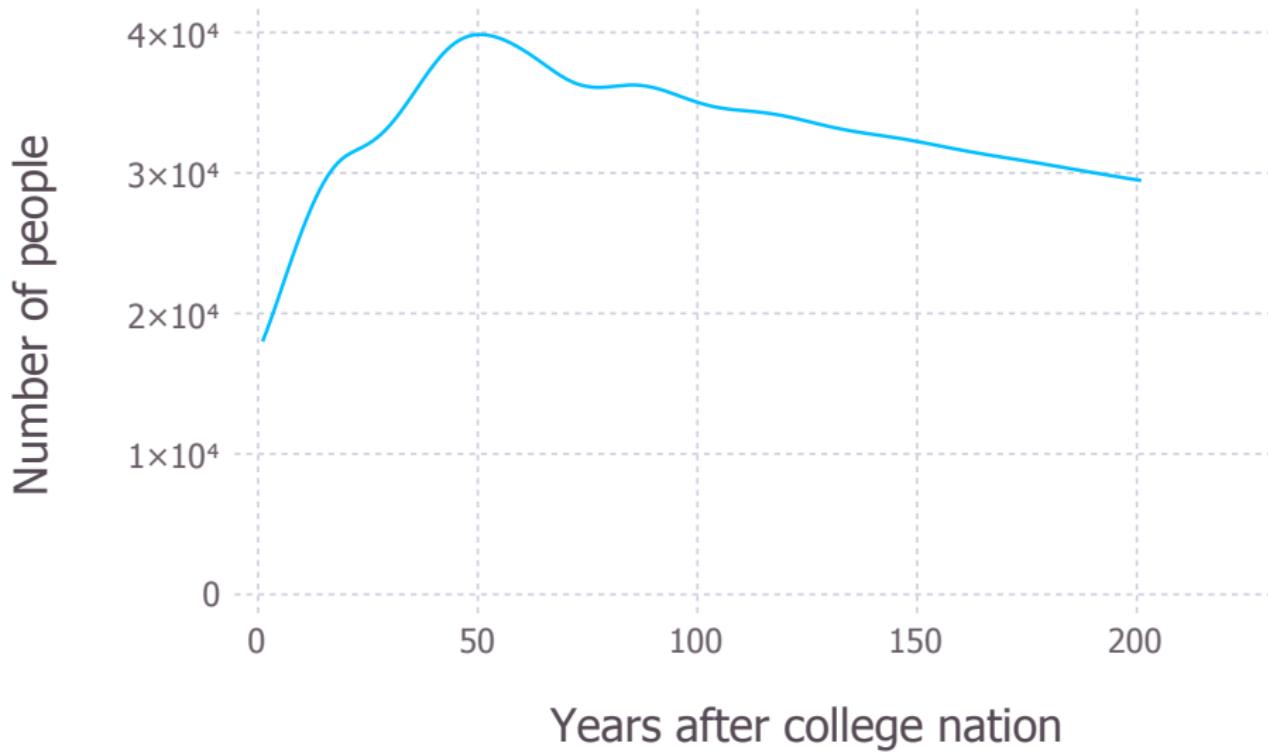


Predicting future population distributions

predict a little farther into the future



Population growth



Immigration

- ▶ $u \in \mathbf{R}^{100}$ is immigration: u_i is the net immigration of $(i - 1)$ -year-olds
- ▶ dynamics with immigration: $x_{t+1} = Ax_t + u$
- ▶ to propagate distribution forward s years:

$$x_{t+1} = Ax_t + u$$

$$x_{t+2} = A(Ax_t + u) + u = A^2x_t + Au + u$$

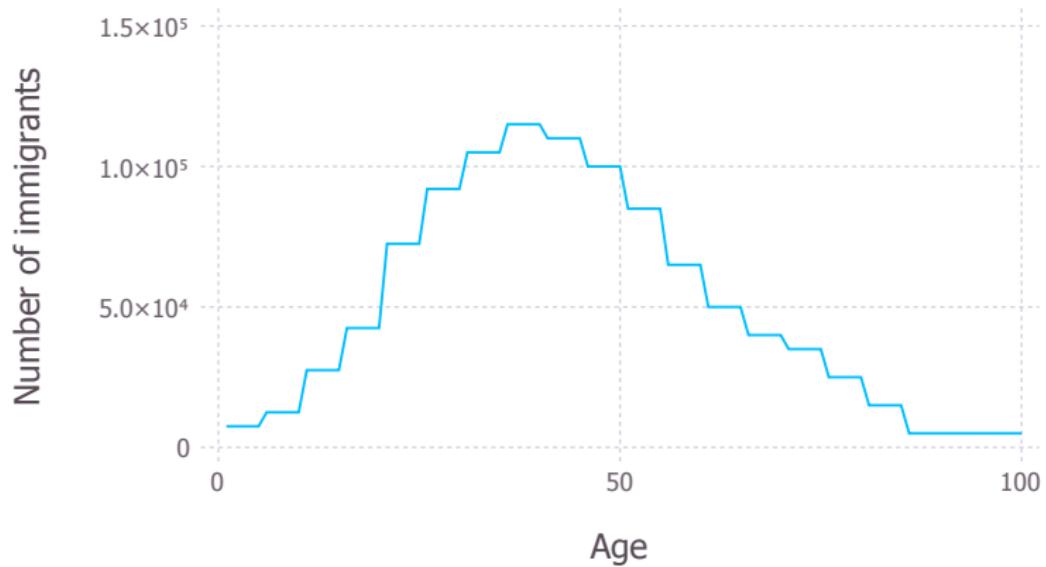
$$\vdots$$

$$x_{t+s} = A^s x_t + A^{s-1}u + \cdots + Au + u$$

- ▶ $(A^{s-1} + \cdots + A + I)u$ is population distribution at $t + s$ due to immigration over years $t, \dots, s - 1$

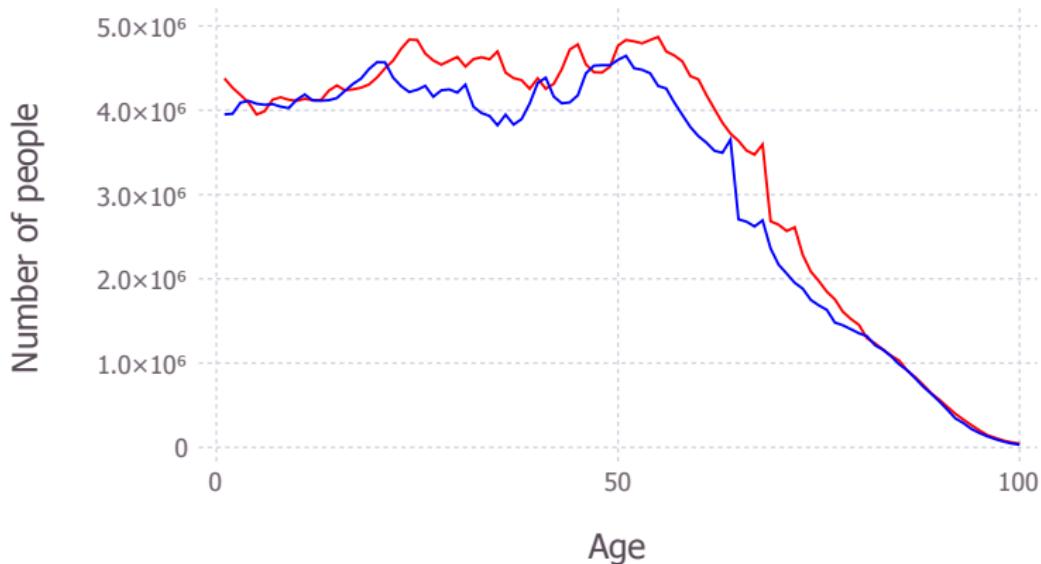
Immigration into the U.S.

piecewise constant approximation



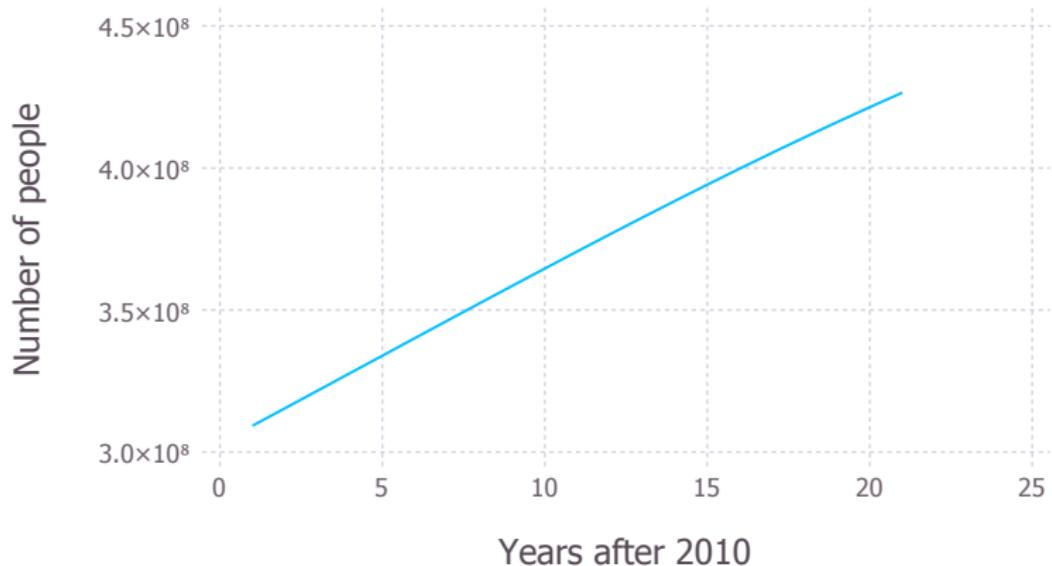
Predicting future population distributions

predicting U.S. 2015 distribution from 2010



Population growth with immigration

- ▶ we can plot $\mathbf{1}^T x_t$ for $t = 1, \dots, 1000$ with immigration



Inferring immigration

- ▶ given x_1 , x_T , b , and d , infer (constant) immigration vector u
- ▶ we have $x_T = A^{T-1}x_1 + A^{T-2}u + \cdots + u$ and so

$$(A^{T-1} + \cdots + A + I)u = x_T - A^{T-1}x_1$$

(what does righthand side mean?)

- ▶ so immigration is

$$u = (A^{T-2} + \cdots + A + I)^{-1}(x_T - A^{T-1}x_1)$$