Matrices in Julia

ENGR108
Stanford University

September 9, 2021
Matrices

- matrices in Julia are represented by 2D arrays
- \([2\ -4\ 8.2;\ -5.5\ 3.5\ 63]\) creates the \(2 \times 3\) matrix

\[
A = \begin{bmatrix}
 2 & -4 & 8.2 \\
-5.5 & 3.5 & 63 \\
\end{bmatrix}
\]

- spaces separate entries in a row; semicolons separate rows
- `size(A)` returns the size of `A` as a pair, i.e.,

  ```
  A_rows, A_cols = size(A) # or
  # A_rows is size(A)[1], A_cols is size(A)[2]
  ```

- row vectors are \(1 \times n\) matrices, e.g., \([4\ 8.7\ -9]\)
Indexing and slicing

- A_{ij} is found with $A[i,j]$
- can use ranges: $A[1:2,1:3]$ is 2×3 submatrix or slice $A_{1:2,1:3}$
- : selects all elements along that dimension
 - $A[:,3]$ is third column
 - $A[2,:]$ is second row
- $A[:]$ stacks the columns of A as a vector (column-major order)
- A'[:, :] stacks the rows of A as a vector (row-major order)
Block matrices

▷ block matrix

\[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]

(with A, B, C, and D matrices) is formed with

\[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]

▷ usual rules governing dimensions of A, B, C, and D apply
Useful matrices in Julia

- $0_{m\times n}$ is `zeros(m,n)`
- $m \times n$ matrix with all entries 1 is `ones(m,n)`
- $I_{n\times n}$ is `eye(n)`
- `diag(x)` is `diagm(x)` (where x is a vector)
Transpose and matrix addition

- A^T is written A' (single quote mark)
- +/- are used for matrix addition/subtraction
 (matrices must have the same size)
- for example,

\[
\begin{bmatrix}
4.0 & 7 \\
-10.6 & 89.8
\end{bmatrix}
+ \begin{bmatrix}
19 & -34.7 \\
20 & 1
\end{bmatrix}
\]

is written

\[
[4.0 \ 7; \ -10.6 \ 89.8] + [19 \ -34.7; \ 20 \ 1]
\]
Matrix-scalar operations

▶ matrix-scalar operations (+, -, *, \) apply elementwise

▶ scalar-matrix multiplication:

\[
10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]
gives

\[
10 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}
\]

(scalar can also appear on right of matrix)

▶ matrix-scalar addition:

\[
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + 10
\]
gives

\[
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 10 & 10 \\ 10 & 10 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 13 & 14 \end{bmatrix}
\]

(which is not standard mathematical notation)
Matrix-vector multiplication

* operator is used for matrix-vector multiplication

For example,

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
5 \\
6
\end{bmatrix}
\]

Is written

\([1 \ 2; \ 3 \ 4] \ * \ [5, \ 6]\)
Matrix multiplication

* is also used for matrix-matrix multiplication:

\[
\begin{bmatrix}
2 & 4 & 3 \\
3 & 1 & 5
\end{bmatrix} \begin{bmatrix}
3 & 10 \\
4 & 2 \\
1 & 7
\end{bmatrix}
\]

is written

\[
\begin{bmatrix}
2 & 4 & 3 \\
3 & 1 & 5
\end{bmatrix} \begin{bmatrix}
3 & 10 \\
4 & 2 \\
1 & 7
\end{bmatrix}
\]

\(A^k\) is \(A^k\) (for square matrix \(A\))
Other functions

- sum of entries of a matrix: \(\text{sum}(A) \)
- average of entries of a matrix: \(\text{mean}(A) \)
- \(\max(A,B) \) and \(\min(A,B) \) finds the element-wise \(\max \) and \(\min \) respectively
 - the arguments must have the same size unless one is a scalar
- \(\text{norm}(A) \) is not what you might think
 - to find \(\left(\sum_{i,j} A_{ij}^2 \right)^{1/2} \) use \(\text{norm}(A[:]) \) or \(\text{vecnorm}(A) \)
Computing regression model RMS error

the math:

- X is an $n \times N$ matrix whose N columns are feature n-vectors
- y is the N-vector of associated outcomes
- regression model is $\hat{y} = X^T \beta + v$ (β is n-vector, v is scalar)
- RMS error is $\text{rms}(\hat{y} - y)$

in Julia:

```julia
y_hat = X'*beta + v
rms_error = norm(y_hat-y)/sqrt(length(y))
```