Matrix inverses in Julia

ENGR108
Stanford University

September 9, 2021
Matrix inverses in Julia

- QR factorization
- inverse
- pseudo-inverse
- backslash operator
the qr command finds the QR factorization of a matrix

\(A = \text{rand}(5, 3) \)

\(Q, R = \text{qr}(A) \)

when columns of \(n \times k \) matrix \(A \) are independent, \(\text{qr} \) is same as ours

when columns are dependent, \(\text{qr} \) is not same as ours

- \(A = QR, Q^TQ = I \), and \(R_{ij} = 0 \) for \(i > j \) always holds
- \(R \) can have zero or negative diagonal entries
- \(R \) is not square when \(A \) is wide
let’s check if columns of A are linearly independent

A must be tall or square

columns are linearly independent if and only if R has no 0 diagonal entries

check if columns of (tall or square) A are linearly independent:

```julia
a1 = rand(5)
a2 = rand(5)
A = [a1 a2 a1+a2] # linearly dependent columns
Q, R = qr(A)
# find the entry of diagonal of R closest to 0
# R can have negative entries
min(abs(diag(R)))
```
_inverse(A) returns the inverse matrix A^{-1}

- Julia will issue an error if
 - A is not square
 - A is not invertible

- you can solve square set of linear equations $Ax = b$, with invertible A, using

  ```
  b = rand(5,1)
  A = rand(5,5)
  x = inv(A)*b
  norm(A*x-b)  # check residual
  ```

 but there is a better way, using backslash
Pseudo-inverse

- for a $m \times n$ matrix A, \texttt{pinv}(A) will return the $n \times m$ pseudo-inverse
- if A is square and invertible
 - \texttt{pinv}(A) will return the inverse A^{-1}
- if A is tall with linearly independent columns
 - \texttt{pinv}(A) will return the left inverse $(A^T A)^{-1} A^T$
- if A is wide with linearly independent rows
 - \texttt{pinv}(A) will return the right inverse $A^T (A A^T)^{-1}$
- in other cases, \texttt{pinv}(A) returns an $m \times n$ matrix, but
 - it is not a left or right inverse of A
 - what it is is beyond the scope of this class
The backslash operator

- given A and b, the \ operator solves the linear system $Ax = b$ for x
- for a $m \times n$ matrix A and a m-vector b, $A\backslash b$ returns a n-vector x
- if A is square and invertible
 - $x = A^{-1}b$
 - the unique solution of $Ax = b$
- if A is tall with linearly independent columns
 - $x = (A^TA)^{-1}A^Tb$
 - the least squares approximate solution of $Ax = b$
- if A is wide with linearly independent rows
 - $x = A^T(AA^T)^{-1}b$
 - x is the least norm solution of $Ax = b$
- in other cases, $A\backslash b$ will print an error message
- uses a factor and solve method similar to QR
Solving matrix systems with backslash

- solve matrix equation $AX = B$ for X, with A square
- with $X = [x_1 \cdots x_k]$, $B = [b_1 \cdots b_k]$, same as solving k linear systems
 \[
 Ax_1 = b_1, \ldots, Ax_k = b_k
 \]
- $X = A\backslash B$ solves the system, doing the right thing:
 - factor A once (order n^3)
 - back substitution to get $x_i = A^{-1}b_i$, $i = 1, \ldots, k$ (order kn^2)