Images

Jenny Hong Ahmed Bou-Rabee Stephen Boyd

EE103
Stanford University

September 6, 2021
Outline

Representation

Linear operations

In-painting

Image de-blurring
Monochrome images

- a.k.a. *monochrome* or *gray-scale* image

- image represented by its brightness values at an array of $m \times n$ locations (pixels)

- typical sizes
 - thumbnail: 16×16, 64×64, 128×128
 - $4K \times 6K = 24M$ pixels
 - HD is 1280×720 pixels

- can represent by an $m \times n$ matrix X or by a single vector $x \in \mathbb{R}^{mn}$ with some encoding of the pixel locations, e.g.,

\[
X_{ij} = x_k, \quad k = m(j - 1) + i, \quad k = 1, \ldots, mn
\]

(this stacks the columns of X, from left to right)
Brightness values

- x_i is brightness of pixel i
- typically $0 \leq x_i \leq 1$ where 0 is black and 1 is white
- values outside $[0, 1]$ are clipped (so $x_i < 0$ shows up as black)
- if x is an image, $-x$ is completely black
- negative image is given by $1 - x$
- $\text{avg}(x)$ is average intensity (brightness) of image
- $\text{std}(x)$ corresponds to image contrast
Scaling, shifting, and adding images

▶ what does image

\[y = a(x - \text{avg}(x)1) + (\text{avg}(x) + b)1 = ax + c1 \]

\[(c = (1 - a)\text{avg}(x) + b) \] look like?
- a scale contrast
- b shifts brightness

▶ \(y_i = x_i^\gamma \) is called \(\gamma\)-correction (widely used)

▶ if \(x \) and \(y \) are images, \(x + y \) is perceived as composite or combination of the images (and isn’t natural, except in some cases)
Examples

original

original + 0.5

(original − 0.4) * 10
Examples

pumpkins

flowers

(pumpkins + flowers)/2
Color images

▶ humans perceive 3 colors, which can be represented in different ways (e.g., RGB, CMYK)

▶ most common is RGB (Red-Green-Blue)

▶ color represented as a 3-vector \((r, g, b)\), with \(r, g, b\) between 0 and 1
 - \((1, 0, 0)\) is bright red
 - \((1, 0, 1)\) is bright purple
 - \((0.2, 0.2, 0.2)\) is a gray

▶ \(m \times n\) image given by 3 \(m \times n\) matrices or one vector \(x \in \mathbb{R}^{3mn}\)
Colors

- \((1,0,0), (0,1,0), (0,0,1)\)
- \((1,1,0), (0,1,1), (1,0,1)\)
- \((0.2,0.2,0.2), (0.5,0.5,0.5), (0.75,0.75,0.75)\)
Color images

original

red

green

blue
Converting color to monochrome

- color pixel values converted to monochrome using $y_i = w^T(r_i, g_i, b_i)$
 - obvious choice: $w = (1/3, 1/3, 1/3)$
 - another common choice: $w = (0.299, 0.587, 0.114)$
 - other choices used for special effects
Converting color to monochrome

- Original
- Equal weights
- Weights: 0.2, 0.5, 0.3
- Weights: 0.6, −0.4, 0.8
Video

- video is represented as a sequence of images captured periodically
- each image is called a *frame*
- typical frame rates: 24, 30, or 60 frames per second
Outline

Representation

Linear operations

In-painting

Image de-blurring
Linear image mappings

► for y and x images, linear mapping $y = Ax$ can represent many common operations on images
 - color to monochrome conversion
 - color correction
 - any mapping from original to distorted pixel locations (e.g., flipping, stretching)
 - blurring
 - changing to lower or higher resolution
 - vertical and horizontal differencing
Moving pixels

- Pixel at location \(i \) in image \(y \) is the pixel at value \(j = d(i) \) in image \(x \)
- \(d(i) \) gives distortion map
- Examples: flipping, zooming, rotating, shifting, key correction
- Some issues/details:
 - We’ll need to approximate the location of the pixels
 - We need to do something with \(y \) pixels that don’t correspond to any \(x \) pixels
- \(y = Ax \), where \(i \)th row of \(A \) is \(e^T_{d(i)} \)
 (or 0, if \(y_i \) doesn’t correspond to any \(x \) pixel)
Flipping images

original image
horizontal flip
vertical flip
Blurring images

- represent image as $m \times n$ matrix X
- represent blur point spread function as $p \times q$ matrix B
- blurred image is given by Y with

$$Y_{ij} = \sum_{k,l} X_{i-k+1,j-l+1} B_{k,l}$$

where
- the sum is over all integers k, l
- we interpret $X_{i,j}$ and $B_{k,l}$ as zero when the indices are out of range

- called 2-D convolution of X and B, denoted $Y = X \ast B$ or $Y = A \ast B$

- blurring is model of effects of optical imperfections, motion blur, ...
Blurring images

original image
blurred image
point spread function
Horizontal and vertical differences

- X is $m \times n$ image (matrix), x its mn-vector representation
- horizontal first order difference is $m \times (n - 1)$ matrix Y with
 \[Y_{ij} = X_{i,j+1} - X_{i,j}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n - 1 \]
- vertical first order difference is $(m - 1) \times n$ matrix Z with
 \[Z_{ij} = X_{i+1,j} - X_{i,j}, \quad i = 1, \ldots, m - 1, \quad j = 1, \ldots, n \]
- these are linear operations, so we have
 \[y = D_{\text{horiz}}^x, \quad z = D_{\text{vert}}^x \]
 for an $m(n - 1)$-matrix D_{horiz} and an $(m - 1)n$-matrix D_{vert}
- each row contains one $+1$ and one -1
Horizontal and vertical differences

(Shown for 3×3 image)

$$D_{\text{horiz}} = \begin{bmatrix} -1 & 1 & +1 \\ -1 & 1 & +1 \\ -1 & 1 & +1 \end{bmatrix}$$

$$D_{\text{vert}} = \begin{bmatrix} -1 & 1 & +1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix}$$
Horizontal and vertical differences

original image

horizontal difference

vertical difference
the Laplacian function is

\[\mathcal{L}(x) = \|D_{\text{horiz}} x\|^2 + \|D_{\text{vert}} x\|^2 \]

\[
= \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} ((X_{i+1,j} - X_{i,j})^2 + (X_{i,j+1} - X_{i,j})^2)
\]

(we also write \(\mathcal{L}(X) \))

\(\mathcal{L}(X) \) is a measure of roughness of the image \(X \)

- \(\mathcal{L}(X) \) is small when the image is smooth
- \(\mathcal{L}(X) = 0 \) only if the image is constant

\(\mathcal{L}(X) \) is used as a regularizer
Outline

Representation

Linear operations

In-painting

Image de-blurring
In-painting

- we are given an image with some pixels values unknown
- *in-painting* means to guess values of the unknown pixels so the recovered image looks good or natural
- in example below, unknown values are shown as black
Least-squares in-painting

- Corrupted/damaged image is given by $m \times n$ matrix X^{corr}

- $\mathcal{K} \subset \{1, \ldots, m\} \times \{1, \ldots, n\}$ are the indices of known pixels

- We need to choose an image X that agrees with the given image on known pixels: $X_{ij} = X_{ij}^{\text{corr}}, (i, j) \in \mathcal{K}$

- We’ll choose X to minimize $\mathcal{L}(X)$, the sum square deviation of all pixel values from their neighbors (small $\mathcal{L}(X)$ gives a smooth image)

- A least-squares problem (variables are unknown pixel values)
In-painting

original image

damaged image

inpainted image
Outline

Representation

Linear operations

In-painting

Image de-blurring
Corrupted image

- y is a linear function of x^{true}, with noise:
 \[y = Ax^{\text{true}} + v \]

- y is the corrupted image, which we have
- x^{true} is the original image, which we want to guess/recover
- v is a noise, which we assume is small
- A is a (known) matrix, often a blurring operator
- image de-blurring is guessing x^{true}
- even if A is invertible, the guess $x = A^{-1}y$ could look very bad
Least-squares de-blurring

- least-squares de-blurring: choose x to minimize

$$\|Ax - y\|^2 + \lambda \mathcal{L}(x)$$

- first term is $\|v\|^2$
- $\lambda > 0$ is a regularization parameter
 - large λ makes x smooth
 - small λ makes $\|Ax - y\|^2$ small
De-blurring example

original image
corrupted image
deblurred image with $\lambda = 0.03$

Image de-blurring
De-blurring: Effect of regularization

lambda = 0.0003

lambda = 0.03

lambda = 3

Image de-blurring