Handwritten Digit Classification

Stephen Boyd
ENGR108
Stanford University

November 8, 2021
Classification

k-means

Boolean classification

Multiclass classification

Classification with random features
Handwritten digit classification

- goal is to automatically determine what a handwritten digit image is (i.e., 0, 1, ..., 8, or 9?)

![Handwritten digits: 6, 5, 4, 2]
images are 16×16 pixels, represented as 256-vectors

values in $[0, 1]$ (0 is black, 1 is white)

images were first de-slanted and size normalized

our classifier is a function $\hat{f} : \mathbb{R}^{256} \to \{0, 1, \ldots, 9\}$ (called multiclass or in this case 10-way classification)

our guess is $\hat{y} = \hat{f}(x)$ for image x

our classifier is wrong when $\hat{y} \neq y$
Data set

- NIST data from US Postal Service
- training set has $N = 7291$ images
 - we’ll use this data set to develop our classifiers
- test set has $N^{\text{test}} = 2007$ images
 - we’ll use this data set to test/judge our classifiers
- we’ll look at error on training set and on test set
Outline

Classification

k-means

Boolean classification

Multiclass classification

Classification with random features
k-means

- start with a collection of image 256-vectors x_1, \ldots, x_N
- run k-means algorithm to cluster into k groups, 10 times with random initial centroids
- use best of these 10 (in mean-square distance to closest centroid)
- centroids/representatives z_1, \ldots, z_k can be viewed as images
Centroids, $k = 2$
Centroids, $k = 10$
Centroids, $k = 20$
Classification via \(k \)-means

- label \(k = 20 \) centroids by hand
- classify new image by label of nearest centroid
- classification error rate (on test set): 24%
Classification via \(k \)-means

Confusion Matrix:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>338</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>253</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>131</td>
<td>10</td>
<td>29</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>143</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>8</td>
<td>78</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>154</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>113</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>107</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>43</td>
<td>3</td>
<td>110</td>
</tr>
</tbody>
</table>
Outline

Classification

\(k \)-means

Boolean classification

Multiclass classification

Classification with random features
a simpler problem: determine if an image \(x \) is digit \(k \) or not digit \(k \)
we use label \(y_i = 1 \) if \(x_i \) is digit \(k \) and \(y_i = -1 \) if not
classifier will have form

\[
\hat{y} = \text{sign}(w^T x + v)
\]

\(w \) is weight 256-vector, \(v \) is offset
we’ll use training set to choose \(w \) and \(v \), and test the classifier on test data set
Least squares Boolean classifier

- want w, v for which $y_i \approx \hat{y}_i = \text{sign}(w^T x_i + v) = \text{sign}(\tilde{y}_i)$
- choose w, v to minimize

$$\sum_{i=1}^{N} (\tilde{y}_i - y_i)^2 + \lambda \|w\|^2 = \|X^T w + v\|_2^2 - y^d\|^2 + \lambda \|w\|^2$$

- $X = [x_1 \cdots x_N]$ is matrix of training image vectors
- $y^d = (y_1, \ldots, y_N)$ is N-vector of labels
- $\lambda > 0$ is regularization parameter
Least squares Boolean classifier

classification error versus λ for predicting the digit 0

Boolean classification
Weight vector
Outline

Classification

k-means

Boolean classification

Multiclass classification

Classification with random features
10-way classification

- let w_i, v_i be weight vector, offset for Boolean classification of digit i
- for image x, $\tilde{y}_i = w_i^T x + v_i$
- the larger \tilde{y}_i is, the more confident we are that image is digit i
- choose $\hat{y} = \text{argmax}_i(\tilde{y}_i) = \text{argmax}_i(w_i^T x + v_i)$
- use the same regularization parameter λ for each digit i
- choose λ so that the total classification error on test set is small
multi-class classification error versus λ

with $\lambda = 50$, test classification error is about 13%
test confusion matrix

true ↓ predicted →

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>348</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>160</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>140</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>173</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>2</td>
<td>120</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>151</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>119</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>157</td>
</tr>
</tbody>
</table>

Multiclass classification
Outline

Classification

\textit{k}-means

Boolean classification

Multiclass classification

Classification with random features
Doing even better

- in classes you’ll take later (AI, statistics), you’ll see (and construct) way better classifiers
- we’ll look at a simple example here
Generating random features

- generate a random 2000×256 matrix R with entries $+1$ or -1
- scale R by $1/\sqrt{256}$, so each row has norm 1
- create 2000 new features \tilde{x} from original x via
 \[\tilde{x}_i = \max\{Rx, 0\} \]
- now do least squares classification with feature 2256-vectors (x_i, \tilde{x}_i)
multi-class classification error versus λ

with $\lambda = 1$, test classification error is about 5%
Example

test confusion matrix

true \downarrow predicted \rightarrow

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>352</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>186</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>150</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>188</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>161</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>138</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>170</td>
</tr>
</tbody>
</table>