Clustering and Linear Independence

Pulkit Tandon

ENGR108
Stanford University

slides adopted from Prof. Stephen Boyd

July 5, 2022
Outline

Clustering

Algorithm

Examples

Applications
Clustering

- given N n-vectors x_1, \ldots, x_N
- goal: partition (divide, cluster) into k groups
- want vectors in the same group to be close to one another
Example settings

- topic discovery and document classification
 - x_i is word count histogram for document i

- patient clustering
 - x_i are patient attributes, test results, symptoms

- customer market segmentation
 - x_i is purchase history and other attributes of customer i

- color compression of images
 - x_i are RGB pixel values

- financial sectors
 - x_i are n-vectors of financial attributes of company i
Clustering objective

- $G_j \subset \{1, \ldots, N\}$ is group j, for $j = 1, \ldots, k$
- c_i is group that x_i is in: $i \in G_{c_i}$
- group *representatives*: n-vectors z_1, \ldots, z_k

- clustering objective is

\[
= \frac{1}{N} \sum_{i=1}^{N} \|x_i - z_{c_i}\|^2
\]

mean square distance from vectors to associated representative

- small means good clustering

- goal: choose clustering c_i and representatives z_j to minimize
Partitioning the vectors given the representatives

- suppose representatives z_1, \ldots, z_k are given
- how do we assign the vectors to groups, i.e., choose c_1, \ldots, c_N?

- c_i only appears in term $\|x_i - z_{c_i}\|^2$ in
- to minimize over c_i, choose c_i so $\|x_i - z_{c_i}\|^2 = \min_j \|x_i - z_j\|^2$
- *i.e., assign each vector to its nearest representative*
Choosing representatives given the partition

- given the partition G_1, \ldots, G_k, how do we choose representatives z_1, \ldots, z_k to minimize?

- splits into a sum of k sums, one for each z_j:

\[
= J_1 + \cdots + J_k, \quad J_j = \frac{1}{N} \sum_{i \in G_j} \|x_i - z_j\|^2
\]

- so we choose z_j to minimize mean square distance to the points in its partition

- this is the mean (or average or centroid) of the points in the partition:

\[
z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i
\]
k-means algorithm

- alternate between updating the partition, then the representatives
- a famous algorithm called *k-means*
- objective decreases in each step

given $x_1, \ldots, x_N \in \mathbb{R}^n$ and $z_1, \ldots, z_k \in \mathbb{R}^n$

repeat

Update partition: assign i to G_j, $j = \arg \min_j \|x_i - z_j'\|^2$

Update centroids: $z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$

until z_1, \ldots, z_k stop changing

Convergence of k-means algorithm

- goes down in each step, until the z_j’s stop changing
- but (in general) the k-means algorithm does not find the partition that minimizes

- k-means is a heuristic: it is not guaranteed to find the smallest possible value of
- the final partition (and its value of J) can depend on the initial representatives
- common approach:
 - run k-means 10 times, with different (often random) initial representatives
 - take as final partition the one with the smallest value of
Outline

Clustering

Algorithm

Examples

Applications
Iteration 1
Iteration 2

Examples
Outline

Clustering

Algorithm

Examples

Applications
Handwritten digit image set

- MNIST images of handwritten digits (via Yann Lecun)
- \(N = 60,000 \) 28 \(\times \) 28 images, represented as 784-vectors \(x_i \)
- 25 examples shown below

\[
\begin{array}{cccccc}
5 & 0 & 4 & 1 & 9 \\
2 & 1 & 3 & 1 & 4 \\
3 & 5 & 3 & 6 & 1 \\
7 & 2 & 8 & 6 & 9 \\
4 & 0 & 9 & 1 & 1 \\
\end{array}
\]
\textit{k-means image clustering}

\begin{itemize}
 \item $k = 20$, run 20 times with different initial assignments
 \item convergence shown below (including best and worst)
\end{itemize}
Group representatives, best clustering

<table>
<thead>
<tr>
<th>8</th>
<th>3</th>
<th>0</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
Topic discovery

- $N = 500$ Wikipedia articles, word count histograms with $n = 4423$
- $k = 9$, run 20 times with different initial assignments
- convergence shown below (including best and worst)
Topics discovered (clusters 1–3)

- words with largest representative coefficients

<table>
<thead>
<tr>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>fight</td>
<td>0.038</td>
<td>holiday</td>
</tr>
<tr>
<td>win</td>
<td>0.022</td>
<td>celebrate</td>
</tr>
<tr>
<td>event</td>
<td>0.019</td>
<td>festival</td>
</tr>
<tr>
<td>champion</td>
<td>0.015</td>
<td>celebration</td>
</tr>
<tr>
<td>fighter</td>
<td>0.015</td>
<td>calendar</td>
</tr>
</tbody>
</table>

- titles of articles closest to cluster representative

Applications 24
Topics discovered (clusters 4–6)

- words with largest representative coefficients

<table>
<thead>
<tr>
<th>Cluster 4</th>
<th>Cluster 5</th>
<th>Cluster 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>album</td>
<td>0.031</td>
<td>game</td>
</tr>
<tr>
<td>release</td>
<td>0.016</td>
<td>season</td>
</tr>
<tr>
<td>song</td>
<td>0.015</td>
<td>team</td>
</tr>
<tr>
<td>music</td>
<td>0.014</td>
<td>win</td>
</tr>
<tr>
<td>single</td>
<td>0.011</td>
<td>player</td>
</tr>
</tbody>
</table>

- titles of articles closest to cluster representative
Topics discovered (clusters 7–9)

- Words with largest representative coefficients

<table>
<thead>
<tr>
<th>Cluster 7</th>
<th>Cluster 8</th>
<th>Cluster 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>match</td>
<td>0.065</td>
<td>film</td>
</tr>
<tr>
<td>win</td>
<td>0.018</td>
<td>star</td>
</tr>
<tr>
<td>championship</td>
<td>0.016</td>
<td>role</td>
</tr>
<tr>
<td>team</td>
<td>0.015</td>
<td>play</td>
</tr>
<tr>
<td>event</td>
<td>0.015</td>
<td>series</td>
</tr>
</tbody>
</table>

- Titles of articles closest to cluster representative

Applications
Linear independence
Outline

Linear independence

Basis

Orthonormal vectors

Gram–Schmidt algorithm
set of \(n \)-vectors \(\{a_1, \ldots, a_k\} \) (with \(k \geq 1 \)) is *linearly dependent* if

\[
\beta_1 a_1 + \cdots + \beta_k a_k = 0
\]

holds for some \(\beta_1, \ldots, \beta_k \), that are not all zero

- equivalent to: at least one \(a_i \) is a linear combination of the others
- we say ‘\(a_1, \ldots, a_k \) are linearly dependent’

\(\{a_1\} \) is linearly dependent only if \(a_1 = 0 \)

\(\{a_1, a_2\} \) is linearly dependent only if one \(a_i \) is a multiple of the other

for more than two vectors, there is no simple to state condition
Example

- the vectors

\[
\begin{align*}
a_1 &= \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, &
\quad a_2 &= \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, &
\quad a_3 &= \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}
\end{align*}
\]

are linearly dependent, since \(a_1 + 2a_2 - 3a_3 = 0 \)

- can express any of them as linear combination of the other two, e.g.,

\[
a_2 = (-1/2)a_1 + (3/2)a_3
\]
Linear independence

- set of n-vectors \(\{a_1, \ldots, a_k\} \) (with $k \geq 1$) is *linearly independent* if it is not linearly dependent, *i.e.*,
\[
\beta_1 a_1 + \cdots + \beta_k a_k = 0
\]
holds only when $\beta_1 = \cdots = \beta_k = 0$

- we say ‘a_1, \ldots, a_k are linearly independent’

- equivalent to: no a_i is a linear combination of the others

- example: the unit n-vectors e_1, \ldots, e_n are linearly independent
Linear combinations of linearly independent vectors

▶ suppose \(x \) is linear combination of linearly independent vectors \(a_1, \ldots, a_k \):

\[
x = \beta_1 a_1 + \cdots + \beta_k a_k
\]

▶ the coefficients \(\beta_1, \ldots, \beta_k \) are unique, i.e., if

\[
x = \gamma_1 a_1 + \cdots + \gamma_k a_k
\]

then \(\beta_i = \gamma_i \) for \(i = 1, \ldots, k \)

▶ this means that (in principle) we can deduce the coefficients from \(x \)

▶ to see why, note that

\[
(\beta_1 - \gamma_1) a_1 + \cdots + (\beta_k - \gamma_k) a_k = 0
\]

and so (by linear independence) \(\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0 \)
Outline

Linear independence

Basis

Orthonormal vectors

Gram–Schmidt algorithm
Independence-dimension inequality

- a linearly independent set of n-vectors can have at most n elements
- put another way: any set of $n + 1$ or more n-vectors is linearly dependent
a set of \(n \) linearly independent \(n \)-vectors \(a_1, \ldots, a_n \) is called a \textit{basis}

any \(n \)-vector \(b \) can be expressed as a linear combination of them:

\[
b = \beta_1 a_1 + \cdots + \beta_n a_n
\]

for some \(\beta_1, \ldots, \beta_n \)

and these coefficients are unique

formula above is called \textit{expansion of} \(b \) \textit{in the} \(a_1, \ldots, a_n \) \textit{basis}

example: \(e_1, \ldots, e_n \) is a basis, expansion of \(b \) is

\[
b = b_1 e_1 + \cdots + b_n e_n
\]
Outline

Linear independence

Basis

Orthonormal vectors

Gram–Schmidt algorithm
Orthonormal vectors

- set of n-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_j$ for $i \neq j$
- they are normalized if $\|a_i\| = 1$ for $i = 1, \ldots, k$
- they are orthonormal if both hold
- can be expressed using inner products as
 \[
 a_i^T a_j = \begin{cases}
 1 & i = j \\
 0 & i \neq j
 \end{cases}
 \]
- orthonormal sets of vectors are linearly independent
- by independence-dimension inequality, must have $k \leq n$
- when $k = n$, a_1, \ldots, a_n are an orthonormal basis
Examples of orthonormal bases

- standard unit n-vectors e_1, \ldots, e_n

- the 3-vectors

$$
\begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}
$$

- the 2-vectors shown below
Orthonormal expansion

if a_1, \ldots, a_n is an orthonormal basis, we have for any n-vector x

$$x = (a_1^T x)a_1 + \cdots + (a_n^T x)a_n$$

called orthonormal expansion of x (in the orthonormal basis)

to verify formula, take inner product of both sides with a_i
Outline

Linear independence

Basis

Orthonormal vectors

Gram–Schmidt algorithm
Gram–Schmidt (orthogonalization) algorithm

- an algorithm to check if a_1, \ldots, a_k are linearly independent
- we’ll see later it has many other uses
Gram–Schmidt algorithm

given n-vectors a_1, \ldots, a_k

for $i = 1, \ldots, k$

1. Orthogonalization: $\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1}$

2. Test for linear dependence: if $\tilde{q}_i = 0$, quit

3. Normalization: $q_i = \tilde{q}_i / \|\tilde{q}_i\|

if G–S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent

if G–S stops early in iteration $i = j$, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so a_1, \ldots, a_k are linearly dependent)
Example

Gram–Schmidt algorithm
Analysis

let’s show by induction that q_1, \ldots, q_i are orthonormal

▶ assume it’s true for $i - 1$

▶ orthogonalization step ensures that

$$\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$$

▶ to see this, take inner product of both sides with $q_j, j < i$

$$q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \cdots - (q_{i-1}^T a_i)(q_j^T q_{i-1})$$

$$= q_j^T a_i - q_j^T a_i = 0$$

▶ so $q_i \perp q_1, \ldots, q_i \perp q_{i-1}$

▶ normalization step ensures that $\|q_i\| = 1$

Gram–Schmidt algorithm
assuming G–S has not terminated before iteration i

\triangleright a_i is a linear combination of q_1, \ldots, q_i:

$$a_i = \|q_i\|q_i + (q_1^T a_i)q_1 + \cdots + (q_{i-1}^T a_i)q_{i-1}$$

\triangleright q_i is a linear combination of a_1, \ldots, a_i: by induction on i,

$$q_i = \left(1/\|q_i\|\right) \left(a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1} \right)$$

and (by induction assumption) each q_1, \ldots, q_{i-1} is a linear combination of a_1, \ldots, a_{i-1}
suppose G–S terminates in step j

- a_j is linear combination of q_1, \ldots, q_{j-1}
 \[a_j = (q_1^T a_j)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1} \]

- and each of q_1, \ldots, q_{j-1} is linear combination of a_1, \ldots, a_{j-1}

- so a_j is a linear combination of a_1, \ldots, a_{j-1}
Complexity of Gram–Schmidt algorithm

- step 1 of iteration i requires $i - 1$ inner products,

 $$q_1^T a_i, \ldots, q_{i-1}^T a_i$$

 which costs $(i - 1)(2n - 1)$ flops

- $2n(i - 1)$ flops to compute \tilde{q}_i

- $3n$ flops to compute $\|\tilde{q}_i\|$ and q_i

- total is

 $$\sum_{i=1}^{k} \left((4n - 1)(i - 1) + 3n \right) = (4n - 1) \frac{k(k - 1)}{2} + 3nk \approx 2nk^2$$

 using $\sum_{i=1}^{k} (i - 1) = k(k - 1)/2$