Matrix Inverse

Pulkit Tandon

ENGR108
Stanford University

slides adopted from Prof. Stephen Boyd

July 26, 2022
Matrix inverses
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Left inverses

- a number x that satisfies $xa = 1$ is called the inverse of a
- inverse (i.e., $1/a$) exists if and only if $a \neq 0$, and is unique
- a matrix X that satisfies $XA = I$ is called a left inverse of A
- if a left inverse exists we say that A is left-invertible
- example: the matrix

$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$

has two different left inverses:

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \quad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$
Left inverse and column independence

- If A has a left inverse C then the columns of A are linearly independent.

 - To see this: if $Ax = 0$ and $CA = I$ then

 $$0 = C0 = C(Ax) = (CA)x = Ix = x$$

- We’ll see later the converse is also true, so

 a matrix is left-invertible if and only if its columns are linearly independent.

- Matrix generalization of

 a number is invertible if and only if it is nonzero

- So left-invertible matrices are tall or square
suppose $Ax = b$, and A has a left inverse C

then $Cb = C(Ax) = (CA)x = Ix = x$

so multiplying the right-hand side by a left inverse yields the solution
Example

\[
A = \begin{bmatrix}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
-2 \\
0
\end{bmatrix}
\]

- over-determined equations \(Ax = b \) have (unique) solution \(x = (1, -1) \)
- \(A \) has two different left inverses,

\[
B = \frac{1}{9} \begin{bmatrix}
-11 & -10 & 16 \\
7 & 8 & -11
\end{bmatrix}, \quad C = \frac{1}{2} \begin{bmatrix}
0 & -1 & 6 \\
0 & 1 & -4
\end{bmatrix}
\]

- multiplying the right-hand side with the left inverse \(B \) we get

\[
Bb = \begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]

- and also

\[
Cb = \begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]

Left and right inverses
Right inverses

- a matrix X that satisfies $AX = I$ is a right inverse of A
- if a right inverse exists we say that A is right-invertible
- A is right-invertible if and only if A^T is left-invertible:
 \[AX = I \iff (AX)^T = I \iff X^T A^T = I \]
- so we conclude
 \[A \text{ is right-invertible if and only if its rows are linearly independent} \]
- right-invertible matrices are wide or square
Solving linear equations with a right inverse

- Suppose A has a right inverse B
- Consider the (square or underdetermined) equations $Ax = b$
- $x = Bb$ is a solution:
 \[Ax = A(Bb) = (AB)b = Ib = b \]
- So $Ax = b$ has a solution for any b
Example

- same A, B, C in example above
- C^T and B^T are both right inverses of A^T
- under-determined equations $A^T x = (1, 2)$ has (different) solutions

$$B^T (1, 2) = (1/3, 2/3, -2/3), \quad C^T (1, 2) = (0, 1/2, -1)$$

(there are many other solutions as well)
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
if A has a left and a right inverse, they are unique and equal (and we say that A is \textit{invertible})

so A must be square

to see this: if $AX = I$, $YA = I$

$$X = IX = (YA)X = Y(AX) = YI = Y$$

we denote them by A^{-1}:

$$A^{-1}A = AA^{-1} = I$$

inverse of inverse: $(A^{-1})^{-1} = A$
Solving square systems of linear equations

▶ suppose A is invertible
▶ for any b, $Ax = b$ has the unique solution

$$x = A^{-1}b$$

▶ matrix generalization of simple scalar equation $ax = b$ having solution

$$x = (1/a)b \text{ (for } a \neq 0)$$

▶ simple-looking formula $x = A^{-1}b$ is basis for many applications
Invertible matrices

the following are equivalent for a square matrix A:

- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- A has a left inverse
- A has a right inverse
Examples

- $I^{-1} = I$
- if Q is orthogonal, i.e., square with $Q^T Q = I$, then $Q^{-1} = Q^T$
- 2×2 matrix A is invertible if and only if $A_{11}A_{22} \neq A_{12}A_{21}$

$$A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

- you need to know this formula
- there are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)
Non-obvious example

\[
A = \begin{bmatrix}
1 & -2 & 3 \\
0 & 2 & 2 \\
-3 & -4 & -4 \\
\end{bmatrix}
\]

- \(A \) is invertible, with inverse

\[
A^{-1} = \frac{1}{30} \begin{bmatrix}
0 & -20 & -10 \\
-6 & 5 & -2 \\
6 & 10 & 2 \\
\end{bmatrix}
\]

- verified by checking \(AA^{-1} = I \) (or \(A^{-1}A = I \))

- we’ll soon see how to compute the inverse
Properties

- $(AB)^{-1} = B^{-1}A^{-1}$ (provided inverses exist)
- $(A^T)^{-1} = (A^{-1})^T$ (sometimes denoted A^{-T})
- negative matrix powers: $(A^{-1})^k$ is denoted A^{-k}
- with $A^0 = I$, identity $A^kA^l = A^{k+l}$ holds for any integers k, l
Triangular matrices

- lower triangular L with nonzero diagonal entries is invertible
- so see this, write $Lx = 0$ as

\[
\begin{align*}
L_{11}x_1 & = 0 \\
L_{21}x_1 + L_{22}x_2 & = 0 \\
& \quad \vdots \\
L_{n1}x_1 + L_{n2}x_2 + \cdots + L_{n,n-1}x_{n-1} + L_{nn}x_n & = 0
\end{align*}
\]

- from first equation, $x_1 = 0$ (since $L_{11} \neq 0$)
- second equation reduces to $L_{22}x_2 = 0$, so $x_2 = 0$ (since $L_{22} \neq 0$)
- and so on

this shows columns of L are linearly independent, so L is invertible

- upper triangular R with nonzero diagonal entries is invertible
Inverse via QR factorization

- Suppose A is square and invertible.
- So its columns are linearly independent.
- So Gram–Schmidt gives QR factorization:
 - $A = QR$.
 - Q is orthogonal: $Q^T Q = I$.
 - R is upper triangular with positive diagonal entries, hence invertible.
- So we have:

$$A^{-1} = (QR)^{-1} = R^{-1} Q^{-1} = R^{-1} Q^T$$
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
suppose R is upper triangular with nonzero diagonal entries

write out $Rx = b$ as

\[R_{11}x_1 + R_{12}x_2 + \cdots + R_{1,n-1}x_{n-1} + R_{1n}x_n = b_1 \]
\[\vdots \]
\[R_{n-1,n-1}x_{n-1} + R_{n-1,n}x_n = b_{n-1} \]
\[R_{nn}x_n = b_n \]

from last equation we get $x_n = b_n / R_{nn}$

from 2nd to last equation we get

\[x_{n-1} = (b_{n-1} - R_{n-1,n}x_n) / R_{n-1,n-1} \]

continue to get $x_{n-2}, x_{n-3}, \ldots, x_1$
Back substitution

called *back substitution* since we find the variables in reverse order, substituting the already known values of x_i

computes $x = R^{-1}b$

complexity:
- first step requires 1 flop (division)
- 2nd step needs 3 flops
- ith step needs $2i - 1$ flops

total is $1 + 3 + \cdots + (2n - 1) = n^2$ flops
Solving linear equations via QR factorization

- assuming A is invertible, let’s solve $Ax = b$, i.e., compute $x = A^{-1}b$
- with QR factorization $A = QR$, we have
 \[A^{-1} = (QR)^{-1} = R^{-1}Q^T \]
- compute $x = R^{-1}(Q^Tb)$ by back substitution
given an $n \times n$ invertible matrix A and an n-vector b

1. **QR factorization**: compute the QR factorization $A = QR$
2. compute $Q^T b$.
3. **Back substitution**: Solve the triangular equation $Rx = Q^T b$ using back substitution

- complexity $2n^3$ (step 1), $2n^2$ (step 2), n^2 (step 3)
- total is $2n^3 + 3n^2 \approx 2n^3$
Multiple right-hand sides

- let's solve $Ax_i = b_i$, $i = 1, \ldots, k$, with A invertible
- carry out QR factorization once ($2n^3$ flops)
- for $i = 1, \ldots, k$, solve $Rx_i = Q^T b_i$ via back substitution ($3kn^2$ flops)
- total is $2n^3 + 3kn^2$ flops
- if k is small compared to n, same cost as solving one set of equations
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Polynomial interpolation

- Let's find coefficients of a cubic polynomial

\[p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 \]

that satisfies

\[p(-1.1) = b_1, \quad p(-0.4) = b_2, \quad p(0.1) = b_3, \quad p(0.8) = b_4 \]

- Write as \(Ac = b \), with

\[
A = \begin{bmatrix}
1 & -1.1 & (-1.1)^2 & (-1.1)^3 \\
1 & -0.4 & (-0.4)^2 & (-0.4)^3 \\
1 & 0.1 & (0.1)^2 & (0.1)^3 \\
1 & 0.8 & (0.8)^2 & (0.8)^3 \\
\end{bmatrix}
\]
Polynomial interpolation

▶ (unique) coefficients given by \(c = A^{-1} b \), with

\[
A^{-1} = \begin{bmatrix}
-0.0370 & 0.3492 & 0.7521 & -0.0643 \\
0.1388 & -1.8651 & 1.6239 & 0.1023 \\
0.3470 & 0.1984 & -1.4957 & 0.9503 \\
-0.5784 & 1.9841 & -2.1368 & 0.7310
\end{bmatrix}
\]

▶ so, e.g., \(c_1 \) is not very sensitive to \(b_1 \) or \(b_4 \)

▶ first column gives coefficients of polynomial that satisfies

\[
p(-1.1) = 1, \quad p(-0.4) = 0, \quad p(0.1) = 0, \quad p(0.8) = 0
\]

called (first) Lagrange polynomial
Lagrange polynomials

Lagrange polynomials associated with points $-1.1, -0.4, 0.2, 0.8$
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Invertibility of Gram matrix

- A has linearly independent columns if and only if $A^T A$ is invertible
- to see this, we’ll show that $Ax = 0 \iff A^T Ax = 0$
- \implies: if $Ax = 0$ then $(A^T A)x = A^T (Ax) = A^T 0 = 0$
- \impliedby: if $(A^T A)x = 0$ then

 $$0 = x^T (A^T A)x = (Ax)^T (Ax) = \|Ax\|^2 = 0$$

 so $Ax = 0$
the pseudo-inverse of A with independent columns is

$$A^\dagger = (A^T A)^{-1} A^T$$

it is a left inverse of A:

$$A^\dagger A = (A^T A)^{-1} A^T A = (A^T A)^{-1} (A^T A) = I$$

(we’ll soon see that it’s a very important left inverse of A)

reduces to A^{-1} when A is square:

$$A^\dagger = (A^T A)^{-1} A^T = A^{-1} A^{-T} A^T = A^{-1} I = A^{-1}$$
Pseudo-inverse of wide matrix

- if A is wide, with linearly independent rows, AA^T is invertible
- pseudo-inverse is defined as

\[A^\dagger = A^T (AA^T)^{-1} \]

- A^\dagger is a right inverse of A:

\[AA^\dagger = AA^T (AA^T)^{-1} = I \]

(we’ll see later it is an important right inverse)

- reduces to A^{-1} when A is square:

\[A^T (AA^T)^{-1} = A^TA^{-T}A^{-1} = A^{-1} \]
suppose A has linearly independent columns, $A = QR$

then $A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$

so

$$A^\dagger = (A^T A)^{-1} A^T = (R^T R)^{-1} (QR)^T = R^{-1} R^{-T} R^T Q^T = R^{-1} Q^T$$

can compute A^\dagger using back substitution on columns of Q^T

for A with linearly independent rows, $A^\dagger = QR^{-T}$