Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi

17. Constrained least squares applications

Outline

[Portfolio optimization](#page-2-0)

[Linear quadratic control](#page-18-0)

[Linear quadratic state estimation](#page-28-0)

Portfolio allocation weights

- \triangleright we invest a total of *V* dollars in *n* different *assets* (stocks, bonds, ...) over some period (one day, week, month, ...)
- **In can include** *short positions*, assets you borrow and sell at the beginning, but must return to the borrower at the end of the period
- \triangleright *portfolio allocation weight vector* w gives the fraction of our total portfolio value held in each asset
- \blacktriangleright Vw_j is the dollar value of asset *j* you hold
- \blacktriangleright 1^{*T*}*w* = 1, with negative *w*_{*i*} meaning a short position
- \triangleright *w* = (-0.2, 0.0, 1.2) means we take a short position of 0.2*V* in asset 1, don't hold any of asset 2, and hold 1.2*V* in asset 3

Leverage, long-only portfolios, and cash

- \blacktriangleright *leverage* is $L = |w_1| + \cdots + |w_n|$ $((L-1)/2$ is also sometimes used)
- \blacktriangleright $L = 1$ when all weights are nonnegative ('long only portfolio')
- \blacktriangleright $w = 1/n$ is called the *uniform portfolio*

- \triangleright we often assume asset *n* is 'risk-free' (or cash or T-bills)
- \triangleright so $w = e_n$ means the portfolio is all cash

Return over a period

- \blacktriangleright \tilde{r}_j is the *return* of asset *j* over the period
- \blacktriangleright \tilde{r}_j is the fractional increase in price or value (decrease if negative)
- \triangleright often expressed as a percentage, like +1.1% or -2.3%
- ▶ full *portfolio return* is

$$
\frac{V^+ - V}{V} = \tilde{r}^T w
$$

where $V^{\scriptscriptstyle +}$ is the portfolio value at the end of the period

If you hold portfolio for *t* periods with returns r_1, \ldots, r_t value is

$$
V_{t+1} = V_1(1+r_1)(1+r_2)\cdots(1+r_t)
$$

portfolio value versus time traditionally plotted using $V_1 = 10000

Return matrix

- \blacktriangleright hold portfolio with weights *w* over *T* periods
- \triangleright define $T \times n$ (asset) *return matrix*, with R_i the return of asset *j* in period *t*
- \blacktriangleright row *t* of *R* is \tilde{r}_t^T , where \tilde{r}_t is the asset return vector over period *t*
- \triangleright column *j* of *R* is time series of asset *j* returns
- portfolio returns vector (time series) is T -vector $r = Rw$
- \blacktriangleright if last asset is risk-free, the last column of R is $\mu^{\text{rf}}\boldsymbol{1}$, where μ^{rf} is the risk-free per-period interest rate

Portfolio return and risk

- \blacktriangleright *r* is time series (vector) of portfolio returns
- \blacktriangleright *average return* or just *return* is $\mathbf{avg}(r)$
- \blacktriangleright *risk* is **std**(*r*)
- \blacktriangleright these are the per-period return and risk
- \triangleright for small per-period returns we have

$$
V_{T+1} = V_1(1 + r_1) \cdots (1 + r_T)
$$

\n
$$
\approx V_1 + V_1(r_1 + \cdots + r_T)
$$

\n
$$
= V_1 + T \arg(r) V_1
$$

 \triangleright so return approximates the average per-period increase in portfolio value

Annualized return and risk

If mean return and risk are often expressed in *annualized form (i.e.*, per year)

 \blacktriangleright if there are *P* trading periods per year

annualized return = $P \arg(r)$, annualized risk = $\sqrt{P} \text{std}(r)$

(the squareroot in risk annualization comes from the assumption that the fluctuations in return around the mean are independent)

 \triangleright if returns are daily, with 250 trading days in a year

annualized return = 250 $avg(r)$, annualized risk = $\sqrt{250} std(r)$

Portfolio optimization

- If how should we choose the portfolio weight vector w ?
- \triangleright we want high (mean) portfolio return, low portfolio risk

- ▶ we know past *realized asset returns* but not future ones
- \triangleright we will choose w that would have worked well on past returns
- \blacktriangleright ... and hope it will work well going forward (just like data fitting)

Portfolio optimization

minimize
$$
\text{std}(Rw)^2 = (1/T) ||Rw - \rho 1||^2
$$

subject to $\mathbf{1}^T w = 1$
 $\text{avg}(Rw) = \rho$

- \blacktriangleright *w* is the weight vector we seek
- \blacktriangleright *R* is the returns matrix for *past returns*
- \triangleright *Rw* is the (past) portfolio return time series
- require mean (past) return ρ
- \blacktriangleright we minimize risk for specified value of return
- ▶ solutions *w* are *Pareto optimal*
- I we are really asking what *would have been* the best constant allocation, had we known future returns

Portfolio optimization via constrained least squares

minimize
$$
||Rw - \rho \mathbf{1}||^2
$$

subject to $\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$

 \blacktriangleright $\mu = R^T \mathbf{1}/T$ is *n*-vector of (past) asset returns

- \triangleright ρ is required (past) portfolio return
- \blacktriangleright an equality constrained least squares problem, with solution

$$
\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}
$$

Optimal portfolios

- \blacktriangleright perform significantly better than individual assets
- \blacktriangleright risk-return curve forms a straight line
- \triangleright one end of the line is the risk-free asset
- ightharpoontriangleright *two-fund theorem:* optimal portfolio *w* is an affine function of ρ

$$
\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & 1 & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^T R & 1 & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}
$$

The big assumption

now we make the big assumption (BA) :

future returns will look something like past ones

- you are warned this need not hold, every time you invest
- it is often reasonably true
- in periods of 'market shift' it's much less true
- \triangleright if BA holds (even approximately), then a good weight vector for past (realized) returns should be good for future (unknown) returns
- \blacktriangleright for example:
	- choose *w* based on last 2 years of returns
	- $-$ then use w for next 6 months

Example

20 assets over 2000 days

Pareto optimal portfolios

Five portfolios

 \blacktriangleright train period of 2000 days used to compute optimal portfolio

 \blacktriangleright test period is different 500-day period

Total portfolio value

Outline

[Portfolio optimization](#page-2-0)

[Linear quadratic control](#page-18-0)

[Linear quadratic state estimation](#page-28-0)

Linear dynamical system

$$
x_{t+1} = A_t x_t + B_t u_t, \quad y_t = C_t x_t, \quad t = 1, 2, ...
$$

- \blacktriangleright *n*-vector x_t is *state* at time *t*
- \blacktriangleright *m*-vector u_t is *input* at time *t*
- \blacktriangleright *p*-vector y_t is *output* at time *t*
- \blacktriangleright $n \times n$ matrix A_t is *dynamics matrix*
- \blacktriangleright $n \times m$ matrix B_t is *input matrix*
- \blacktriangleright $p \times n$ matrix C_t is *output matrix*
- $\blacktriangleright x_t$, u_t , y_t often represent deviations from a standard operating condition

Linear quadratic control

minimize
$$
J_{\text{output}} + \rho J_{\text{input}}
$$

subject to $x_{t+1} = A_t x_t + B_t u_t, \quad t = 1, ..., T - 1$
 $x_1 = x^{\text{init}}, \quad x_T = x^{\text{des}}$

- \triangleright variables are state sequence x_1, \ldots, x_T and input sequence u_1, \ldots, u_{T-1}
- \blacktriangleright two objectives are quadratic functions of state and input sequences:

$$
J_{\text{output}} = ||y_1||^2 + \dots + ||y_T||^2 = ||C_1x_1||^2 + \dots + ||C_Tx_T||^2
$$

$$
J_{\text{input}} = ||u_1||^2 + \dots + ||u_{T-1}||^2
$$

- \blacktriangleright first constraint imposes the linear dynamics equations
- \blacktriangleright second set of constraints specifies the initial and final state
- \triangleright ρ is positive parameter used to trade off the two objectives

Constrained least squares formulation

minimize
$$
||C_1x_1||^2 + \cdots + ||C_Tx_T||^2 + \rho ||u_1||^2 + \cdots + \rho ||u_{T-1}||^2
$$

\nsubject to $x_{t+1} = A_t x_t + B_t u_t, \quad t = 1, \ldots, T-1$
\n $x_1 = x^{\text{init}}, \quad x_T = x^{\text{des}}$

 \triangleright can be written as

minimize
$$
\|\tilde{A}z - \tilde{b}\|^2
$$

subject to $\tilde{C}z = \tilde{d}$

 \triangleright vector *z* contains the *Tn* + $(T - 1)m$ variables:

$$
z=(x_1,\ldots,x_T,u_1,\ldots,u_{T-1})
$$

Constrained least squares formulation

$$
\tilde{A} = \begin{bmatrix}\nC_1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & C_T & 0 & \cdots & 0 \\
\hline\n0 & \cdots & 0 & \sqrt{\rho I} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & \sqrt{\rho I}\n\end{bmatrix}, \quad \tilde{b} = 0
$$
\n
$$
\tilde{C} = \begin{bmatrix}\nA_1 - I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\
0 & A_2 - I & \cdots & 0 & 0 & B_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{T-1} - I & 0 & 0 & \cdots & B_{T-1} \\
\hline\nI & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0\n\end{bmatrix}, \quad \tilde{d} = \begin{bmatrix}\n0 \\
0 \\
\vdots \\
0 \\
\hline\n\end{bmatrix}
$$

Example

 \blacktriangleright time-invariant system: system matrices are constant

$$
A = \begin{bmatrix} 0.855 & 1.161 & 0.667 \\ 0.015 & 1.073 & 0.053 \\ -0.084 & 0.059 & 1.022 \end{bmatrix}, \qquad B = \begin{bmatrix} -0.076 \\ -0.139 \\ 0.342 \end{bmatrix},
$$

$$
C = \begin{bmatrix} 0.218 & -3.597 & -1.683 \end{bmatrix}
$$

initial condition $x^{\text{init}} = (0.496, -0.745, 1.394)$

If target or desired final state $x^{\text{des}} = 0$

 \blacktriangleright *T* = 100

Optimal trade-off curve

Three points on the trade-off curve

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.24

Linear state feedback control

 \blacktriangleright linear state feedback control uses the input

$$
u_t=Kx_t, \quad t=1,2,\ldots
$$

- \blacktriangleright *K* is *state feedback gain matrix*
- \triangleright widely used, especially when x_t should converge to zero, T is not specified
- one choice for *K*: solve linear quadratic control problem with $x^{\text{des}} = 0$
- Solution u_t is a linear function of x^{init} , so u_1 can be written as

$$
u_1 = Kx^{\text{init}}
$$

- \triangleright columns of *K* can be found by computing u_1 for $x^{\text{init}} = e_1, \ldots, e_n$
- \blacktriangleright use this K as state feedback gain matrix

Example

- \blacktriangleright system matrices of previous example
- blue curve uses optimal linear quadratic control for $T = 100$
- \blacktriangleright red curve uses simple linear state feedback $u_t = Kx_t$

Outline

[Portfolio optimization](#page-2-0)

[Linear quadratic control](#page-18-0)

[Linear quadratic state estimation](#page-28-0)

State estimation

 \blacktriangleright linear dynamical system model:

$$
x_{t+1} = A_t x_t + B_t w_t, \quad y_t = C_t x_t + v_t, \quad t = 1, 2, ...
$$

- \blacktriangleright *x*_t is *state* (*n*-vector)
- \blacktriangleright y_t is *measurement* (*p*-vector)
- \blacktriangleright w_t is *input* or *process noise* (*m*-vector)
- \blacktriangleright v_t is *measurement noise* or *measurement residual* (*p*-vector)
- \blacktriangleright we know A_t , B_t , C_t , and measurements y_1, \ldots, y_T
- \blacktriangleright w_t , v_t are unknown, but assumed small
- \blacktriangleright *state estimation*: estimate/guess x_1, \ldots, x_T

Least squares state estimation

minimize
$$
J_{\text{meas}} + \lambda J_{\text{proc}}
$$

subject to $x_{t+1} = A_t x_t + B_t w_t$, $t = 1, ..., T - 1$

- \triangleright variables: states x_1, \ldots, x_T and input noise w_1, \ldots, w_{T-1}
- **If** primary objective J_{meas} is sum of squares of measurement residuals:

$$
J_{\text{meas}} = ||C_1x_1 - y_1||^2 + \dots + ||C_Tx_T - y_T||^2
$$

 \triangleright secondary objective J_{proc} is sum of squares of process noise

$$
J_{\text{proc}} = ||w_1||^2 + \cdots + ||w_{T-1}||^2
$$

 \blacktriangleright $\lambda > 0$ is a parameter, trades off measurement and process errors

Constrained least squares formulation

minimize $||C_1x_1 - y_1||^2 + \cdots + ||C_Tx_T - y_T||^2 + \lambda(||w_1||^2 + \cdots + ||w_{T-1}||^2)$ subject to $x_{t+1} = A_t x_t + B_t w_t$, $t = 1, ..., T-1$

 \blacktriangleright can be written as

minimize
$$
\|\tilde{A}z - \tilde{b}\|^2
$$

subject to $\tilde{C}z = \tilde{d}$

 \triangleright vector *z* contains the *Tn* + $(T - 1)m$ variables:

$$
z=(x_1,\ldots,x_T,w_1,\ldots,w_{T-1})
$$

Constrained least squares formulation

$$
\tilde{A} = \begin{bmatrix}\nC_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & C_2 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & C_T & 0 & \cdots & 0 \\
\hline\n0 & 0 & \cdots & 0 & \sqrt{\lambda}I & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \sqrt{\lambda}I\n\end{bmatrix}, \quad \tilde{b} = \begin{bmatrix}\ny_1 \\
y_2 \\
\vdots \\
y_T \\
\vdots \\
0\n\end{bmatrix}
$$
\n
$$
\tilde{C} = \begin{bmatrix}\nA_1 & -I & 0 & \cdots & 0 & 0 & 0 \\
0 & A_2 & -I & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{T-1} & -I & 0\n\end{bmatrix}, \quad \tilde{d} = 0
$$

Missing measurements

- ► suppose we have measurements y_t for $t \in \mathcal{T}$, a subset of $\{1, \ldots, T\}$
- **IF** measurements for $t \notin \mathcal{T}$ are missing
- \triangleright to estimate states, use same formulation but with

$$
J_{\text{meas}} = \sum_{t \in \mathcal{T}} ||C_t x_t - y_t||^2
$$

If from estimated states \hat{x}_t **, can estimate missing measurements**

$$
\hat{y}_t = C_t \hat{x}_t, \quad t \notin \mathcal{T}
$$

Example

$$
A_t = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad B_t = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad C_t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
$$

- \triangleright simple model of mass moving in a 2-D plane
- \blacktriangleright $x_t = (p_t, z_t)$: 2-vector p_t is position, 2-vector z_t is the velocity
- $y_t = C_t x_t + w_t$ is noisy measurement of position
- \blacktriangleright *T* = 100

Measurements and true positions

 \blacktriangleright solid line is exact position $C_t x_t$

 \blacktriangleright 100 noisy measurements y_t shown as circles

Position estimates

blue lines show position estimates for three values of λ

Cross-validation

- ighthrow randomly remove 20% (say) of the measurements and use as test set
- **If** for many values of λ , estimate states using other (*training*) measurements
- \triangleright for each λ , evaluate RMS measurement residuals on test set
- ighthroported by choose λ to (approximately) minimize the RMS test residuals

Example

- \triangleright cross-validation method applied to previous example
- \blacktriangleright remove 20 of the 100 measurements
- ► suggests using $\lambda \approx 10^3$