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Portfolio allocation weights

> we invest a total of V dollars in n different assets (stocks, bonds, ...) over
some period (one day, week, month, ...)

» can include short positions, assets you borrow and sell at the beginning,
but must return to the borrower at the end of the period

» portfolio allocation weight vector w gives the fraction of our total portfolio
value held in each asset

> Vw; is the dollar value of asset j you hold
> 17w = 1, with negative w; meaning a short position

> w=(-0.2,0.0, 1.2) means we take a short position of 0.2V in asset 1,
don't hold any of asset 2, and hold 1.2V in asset 3

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.2



Leverage, long-only portfolios, and cash

> leverageis L = |wi| + -+ -+ |w,|
((L—-1)/2is also sometimes used)

» L =1 when all weights are nonnegative (‘long only portfolio’)

> w =1/nis called the uniform portfolio

> we often assume asset n is ‘risk-free’ (or cash or T-bills)

> so w = e, means the portfolio is all cash
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Return over a period

> 7; is the return of asset j over the period
> 7, is the fractional increase in price or value (decrease if negative)
> often expressed as a percentage, like +1.1% or —2.3%
» full portfolio return is
V+ - V ~T
=Frw
Vv

where V* is the portfolio value at the end of the period

» if you hold portfolio for ¢ periods with returns ry, . .., r; value is
VH_] = V](l +r1)(1 + r2) o (1 +r,)

> portfolio value versus time traditionally plotted using V; = $10000
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Return matrix

> hold portfolio with weights w over T periods

> define T X n (asset) return matrix, with R,; the return of asset j in period ¢
> row t of Ris ?tT, where 7, is the asset return vector over period ¢

» column j of R is time series of asset j returns

» portfolio returns vector (time series) is T-vector r = Rw

> if last asset is risk-free, the last column of R is yrfl, where ,urf is the
risk-free per-period interest rate
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Portfolio return and risk

> ris time series (vector) of portfolio returns
> average return or just return is avg(r)
> risk is std(r)

> these are the per-period return and risk

» for small per-period returns we have

Vi Vill+r)---(1+r7)
Vi+Vi(ri+---+rr)

V] + Tavg(r)V1

Q

> so return approximates the average per-period increase in portfolio value
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Annualized return and risk

> mean return and risk are often expressed in annualized form (i.e., per year)

> if there are P trading periods per year
annualized return = P avg(r), annualized risk = VP std(7)

(the squareroot in risk annualization comes from the assumption that the
fluctuations in return around the mean are independent)

> if returns are daily, with 250 trading days in a year

annualized return = 250 avg(r), annualized risk = V250 std(r)
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Portfolio optimization

v

how should we choose the portfolio weight vector w?

v

we want high (mean) portfolio return, low portfolio risk

> we know past realized asset returns but not future ones

v

we will choose w that would have worked well on past returns

» ... and hope it will work well going forward (just like data fitting)
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Portfolio optimization
minimize  std(Rw)? = (1/T)||Rw — p1|*
subjectto 17w =1

avg(Rw) = p

> w is the weight vector we seek

v

R is the returns matrix for past returns
Rw is the (past) portfolio return time series
require mean (past) return p

we minimize risk for specified value of return

vV vV v VY

solutions w are Pareto optimal

> we are really asking what would have been the best constant allocation,
had we known future returns
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Portfolio optimization via constrained least squares

minimize  [|[Rw — p1]||?

subject to T |w=
H P

> u= RT1/T is n-vector of (past) asset returns
> p is required (past) portfolio return

> an equality constrained least squares problem, with solution

-1

w 2R"TR 1 4 20Tu
o |=| 17 0 0 1
2 ut 0 0 o
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Optimal portfolios

> perform significantly better than individual assets

> risk-return curve forms a straight line

two-fund theorem: optimal portfolio w is an affine function of p

> one end of the line is the risk-free asset
| 4

w 2RTR 1 u

71 | = 17 0 0

2 ul 0 0
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The big assumption

> now we make the big assumption (BA):
FUTURE RETURNS WILL LOOK SOMETHING LIKE PAST ONES

— you are warned this need not hold, every time you invest
— it is often reasonably true
— in periods of ‘market shift’ it's much less true

> if BA holds (even approximately), then a good weight vector for past
(realized) returns should be good for future (unknown) returns

» for example:

— choose w based on last 2 years of returns
— then use w for next 6 months
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20 assets over 2000 days

Example
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Pareto optimal portfolios

Annualized return

| |
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Five portfolios

Return Risk
Portfolio Train Test Train Test Leverage
risk-free 0.01 0.01 0.00 0.00 1.00
p =10% 0.10 0.08 0.09 0.07 1.96
p =20% 0.20 0.15 0.18 0.15 3.03
p =40% 0.40 0.30 0.38 0.31 5.48
1/n (uniform weights) 0.10 0.21 0.23 0.13 1.00

> train period of 2000 days used to compute optimal portfolio

> test period is different 500-day period
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Total portfolio value
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Linear quadratic control
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Linear dynamical system

X1 =AX + By, yi=Cxy, t=1,2,...

> n-vector x; is state at time ¢

> m-vector u; is input at time ¢

> p-vector y; is output at time t

> n X n matrix A, is dynamics matrix
> n X m matrix B, is input matrix

> p X n matrix C; is output matrix

> Xxy, u;, y; often represent deviations from a standard operating condition
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Linear quadratic control

minimize Joutput + P]input

SubjeCt to X1 = Atxt + B,ut, t= 1, ey T-1
X = xinit Xy = xdes
> variables are state sequence xi, ..., x7 and input sequence uy, ..., ur_q
> two objectives are quadratic functions of state and input sequences:
Jowput = Iyl - +1lyrll> = ICixall* + -+ + || Crxr)?
Jinput = [lu1 ”2 +ooe ot lur—y ”2

v

first constraint imposes the linear dynamics equations

v

second set of constraints specifies the initial and final state

v

p is positive parameter used to trade off the two objectives
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Constrained least squares formulation

minimize  ||Cyx;||? + - + [|Crxr||? + plla |1 + - + pllur—1 ||?

SubjeCt to X+l = Alx, + B,u,, t= 1, ey T-1
X = xlmt, xXr = xdes

> can be written as L
minimize  ||Az - b|?
subjectto Cz=d

> vector z contains the Tn + (T — 1)m variables:

2= (X1, ., X7, U, UT—T)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.20



Constrained least squares formulation

(¢, -+ 0 0 0
- |0 Cr| 0 0 -
A=170 0 | oI o |© =0
0 0] 0 NS
A -1 0 0 0[B 0 0 0
0 Ay -1 0 0|0 B 0 0
C= : : : - , d=
0 00 -+Ary-1|0 0 - Br 0
I 00-- 0 0[0O0-- 0 ximit
| 000 0 71]00-- 0 xdes
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Example

> time-invariant system: system matrices are constant

0.855 1.161 0.667 -0.076
A= 0.015 1.073 0.053 |, B=| -0.139 |,
—-0.084 0.059 1.022 0.342

C= [ 0.218 -3.597 -1.683 ]
> initial condition ™ = (0.496, —0.745, 1.394)
> target or desired final state x4 = 0

> T =100
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Optimal trade-off curve

J output
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Three points on the trade-off curve

p =0.05 =
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Linear state feedback control

> linear state feedback control uses the input
M[ZKX[, t=1,2,...
> K is state feedback gain matrix
> widely used, especially when x; should converge to zero, T is not specified
> one choice for K: solve linear quadratic control problem with x4 = 0
> solution u; is a linear function of xmi‘, SO uy can be written as
up = Kxinil

> columns of K can be found by computing u; for ™t = ¢, ..., e,

v

use this K as state feedback gain matrix
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Example

0.1

State feedback

s 0 =0.2 Optimal
Optimal
o1} | State feedback™
| | |
0 50 , 100 150 0 50 , 100 150
> system matrices of previous example
> blue curve uses optimal linear quadratic control for 7 = 100
> red curve uses simple linear state feedback u, = Kx;
17.26
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Linear quadratic state estimation
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State estimation

» linear dynamical system model:
Xe1 =AX;+Bwy, yw=Cxp+v,, t=1,2,...
> x, is state (n-vector)
> vy, is measurement (p-vector)
> w;, is input or process noise (m-vector)
> v, is measurement noise or measurement residual (p-vector)
> we know A, B;, Cy, and measurements yy,...,yr
> w,, v, are unknown, but assumed small

> state estimation: estimate/guess x1,...,xr
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Least squares state estimation

minimize  Jeas + AJproc
subjectto x4 = A +Bwy, t=1,...,T—1

v

variables: states xy, ..., xr and input noise wy, ..., wr_|

> primary objective Jyeas is sum of squares of measurement residuals:
Jmeas = |C1x1 = y1|[> + - - + || Crar — yr|?
meas — ” 1X1 yl” + +” TXT yT”
> secondary objective Jyo is sum of squares of process noise

2 2
Jproc = [will"+ -+ [lwr |l

v

A > 0 is a parameter, trades off measurement and process errors
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Constrained least squares formulation

minimize  [|Cixy — yi[* + -+ + [|Crxr — yrlI> + A(wi[|> + -+ - + [lwr—1[1?)
SUbjeCt to Xt+l = A,x, + BtW[, = 1, ceey T - 1

> can be written as L
minimize  ||Az - b||?
subjectto Cz=d

> vector z contains the Tn + (T — 1)m variables:

2= (X1, .., X7, Wi, ..., WT_1)
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Constrained least squares formulation

C1 0 . 0 0 . 0 [ yi ]
0 C2 e 0 0 . 0 2
il o o Crl 0 - 0|, b=|w
0 0 o |vau -~ 0 0
0 0 0|0 var 0
Ay -1 O 0 0|B O 0
) 0 Ay -I 0 0[0 B 0 N
C= : : ) ,  d=0
0O 0 O Ar.y 1|10 O Br-i
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Missing measurements

> suppose we have measurements y, for r € 7, a subset of {1,...,T}
> measurements for t ¢ 7 are missing

> to estimate states, use same formulation but with

Jimeas = Z “Ctxt _yt”2
teT

> from estimated states X;, can estimate missing measurements

yi=Cki, t&T
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S oo~

SO = O

S = O =

Example

—_ o = O
o= O O

- o O O
O
Il
—

» simple model of mass moving in a 2-D plane

> x; = (ps, 2;): 2-vector p, is position, 2-vector z; is the velocity

> y, = Cix; + w, is noisy measurement of position

> T =100

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

17.33



Measurements and true positions

=500

(x1)2

-1000

—1500 -

!
0 100 200 300
()1

» solid line is exact position Cyx;

»> 100 noisy measurements y, shown as circles
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Position estimates

blue lines show position estimates for three values of A
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Cross-validation

v

randomly remove 20% (say) of the measurements and use as test set

» for many values of A, estimate states using other (fraining) measurements

v

for each A, evaluate RMS measurement residuals on test set

v

choose A to (approximately) minimize the RMS test residuals
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Example

RMS error

| | | |
1073 107! 10! 103 10°
1

> cross-validation method applied to previous example
» remove 20 of the 100 measurements
> suggests using A ~ 103
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