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17. Constrained least squares applications



Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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Portfolio allocation weights

I we invest a total of V dollars in n different assets (stocks, bonds, . . . ) over
some period (one day, week, month, . . . )

I can include short positions, assets you borrow and sell at the beginning,
but must return to the borrower at the end of the period

I portfolio allocation weight vector w gives the fraction of our total portfolio
value held in each asset

I Vwj is the dollar value of asset j you hold
I 1Tw = 1, with negative wi meaning a short position
I w = (−0.2, 0.0, 1.2) means we take a short position of 0.2V in asset 1,

don’t hold any of asset 2, and hold 1.2V in asset 3
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Leverage, long-only portfolios, and cash

I leverage is L = |w1 | + · · · + |wn |
((L − 1)/2 is also sometimes used)

I L = 1 when all weights are nonnegative (‘long only portfolio’)

I w = 1/n is called the uniform portfolio

I we often assume asset n is ‘risk-free’ (or cash or T-bills)

I so w = en means the portfolio is all cash
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Return over a period

I r̃j is the return of asset j over the period
I r̃j is the fractional increase in price or value (decrease if negative)
I often expressed as a percentage, like +1.1% or −2.3%
I full portfolio return is

V+ − V
V = r̃Tw

where V+ is the portfolio value at the end of the period
I if you hold portfolio for t periods with returns r1, . . . , rt value is

Vt+1 = V1 (1 + r1) (1 + r2) · · · (1 + rt)
I portfolio value versus time traditionally plotted using V1 = $10000

Introduction to Applied Linear Algebra Boyd & Vandenberghe 17.4



Return matrix

I hold portfolio with weights w over T periods

I define T × n (asset) return matrix, with Rtj the return of asset j in period t

I row t of R is r̃T
t , where r̃t is the asset return vector over period t

I column j of R is time series of asset j returns

I portfolio returns vector (time series) is T-vector r = Rw

I if last asset is risk-free, the last column of R is 𝜇rf1, where 𝜇rf is the
risk-free per-period interest rate
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Portfolio return and risk

I r is time series (vector) of portfolio returns

I average return or just return is avg(r)
I risk is std(r)
I these are the per-period return and risk

I for small per-period returns we have

VT+1 = V1 (1 + r1) · · · (1 + rT )
≈ V1 + V1 (r1 + · · · + rT )
= V1 + T avg(r)V1

I so return approximates the average per-period increase in portfolio value
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Annualized return and risk

I mean return and risk are often expressed in annualized form (i.e., per year)

I if there are P trading periods per year

annualized return = P avg(r), annualized risk =
√

P std(r)

(the squareroot in risk annualization comes from the assumption that the
fluctuations in return around the mean are independent)

I if returns are daily, with 250 trading days in a year

annualized return = 250 avg(r), annualized risk =
√

250 std(r)
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Portfolio optimization

I how should we choose the portfolio weight vector w?

I we want high (mean) portfolio return, low portfolio risk

I we know past realized asset returns but not future ones

I we will choose w that would have worked well on past returns

I . . . and hope it will work well going forward (just like data fitting)
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Portfolio optimization

minimize std(Rw)2 = (1/T)‖Rw − 𝜌1‖2

subject to 1Tw = 1
avg(Rw) = 𝜌

I w is the weight vector we seek
I R is the returns matrix for past returns

I Rw is the (past) portfolio return time series
I require mean (past) return 𝜌

I we minimize risk for specified value of return
I solutions w are Pareto optimal

I we are really asking what would have been the best constant allocation,
had we known future returns
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Portfolio optimization via constrained least squares

minimize ‖Rw − 𝜌1‖2

subject to
[

1T

𝜇T

]
w =

[
1
𝜌

]

I 𝜇 = RT1/T is n-vector of (past) asset returns

I 𝜌 is required (past) portfolio return

I an equality constrained least squares problem, with solution
w
z1
z2

 =


2RTR 1 𝜇
1T 0 0
𝜇T 0 0


−1 

2𝜌T𝜇
1
𝜌


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Optimal portfolios

I perform significantly better than individual assets

I risk-return curve forms a straight line

I one end of the line is the risk-free asset

I two-fund theorem: optimal portfolio w is an affine function of 𝜌
w
z1
z2

 =


2RTR 1 𝜇
1T 0 0
𝜇T 0 0


−1 

0
1
0

 + 𝜌


2RTR 1 𝜇

1T 0 0
𝜇T 0 0


−1 

2T𝜇
0
1


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The big assumption

I now we make the big assumption (BA):
future returns will look something like past ones

– you are warned this need not hold, every time you invest
– it is often reasonably true
– in periods of ‘market shift’ it’s much less true

I if BA holds (even approximately), then a good weight vector for past
(realized) returns should be good for future (unknown) returns

I for example:
– choose w based on last 2 years of returns
– then use w for next 6 months
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Example

20 assets over 2000 days
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Pareto optimal portfolios
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Five portfolios

Return Risk

Portfolio Train Test Train Test Leverage

risk-free 0.01 0.01 0.00 0.00 1.00
𝜌 = 10% 0.10 0.08 0.09 0.07 1.96
𝜌 = 20% 0.20 0.15 0.18 0.15 3.03
𝜌 = 40% 0.40 0.30 0.38 0.31 5.48
1/n (uniform weights) 0.10 0.21 0.23 0.13 1.00

I train period of 2000 days used to compute optimal portfolio
I test period is different 500-day period
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Total portfolio value
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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Linear dynamical system

xt+1 = Atxt + Btut, yt = Ctxt, t = 1, 2, . . .

I n-vector xt is state at time t

I m-vector ut is input at time t

I p-vector yt is output at time t

I n × n matrix At is dynamics matrix

I n × m matrix Bt is input matrix

I p × n matrix Ct is output matrix

I xt, ut, yt often represent deviations from a standard operating condition
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Linear quadratic control

minimize Joutput + 𝜌Jinput
subject to xt+1 = Atxt + Btut, t = 1, . . . , T − 1

x1 = xinit, xT = xdes

I variables are state sequence x1, . . . , xT and input sequence u1, . . . , uT−1

I two objectives are quadratic functions of state and input sequences:

Joutput = ‖y1‖2 + · · · + ‖yT ‖2 = ‖C1x1‖2 + · · · + ‖CTxT ‖2

Jinput = ‖u1‖2 + · · · + ‖uT−1‖2

I first constraint imposes the linear dynamics equations
I second set of constraints specifies the initial and final state
I 𝜌 is positive parameter used to trade off the two objectives
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Constrained least squares formulation

minimize ‖C1x1‖2 + · · · + ‖CTxT ‖2 + 𝜌‖u1‖2 + · · · + 𝜌‖uT−1‖2

subject to xt+1 = Atxt + Btut, t = 1, . . . , T − 1
x1 = xinit, xT = xdes

I can be written as
minimize ‖Ãz − b̃‖2

subject to C̃z = d̃

I vector z contains the Tn + (T − 1)m variables:

z = (x1, . . . , xT , u1, . . . , uT−1)
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Constrained least squares formulation

Ã =



C1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · CT 0 · · · 0
0 · · · 0 √

𝜌I · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · √

𝜌I


, b̃ = 0

C̃ =



A1 −I 0 · · · 0 0 B1 0 · · · 0
0 A2 −I · · · 0 0 0 B2 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · AT−1 −I 0 0 · · · BT−1
I 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 I 0 0 · · · 0


, d̃ =



0
0
...
0

xinit

xdes


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Example

I time-invariant system: system matrices are constant

A =


0.855 1.161 0.667
0.015 1.073 0.053

−0.084 0.059 1.022

 , B =


−0.076
−0.139

0.342

 ,
C =

[
0.218 −3.597 −1.683

]
I initial condition xinit = (0.496,−0.745, 1.394)
I target or desired final state xdes = 0

I T = 100
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Optimal trade-off curve
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Three points on the trade-off curve
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Linear state feedback control

I linear state feedback control uses the input

ut = Kxt, t = 1, 2, . . .

I K is state feedback gain matrix
I widely used, especially when xt should converge to zero, T is not specified

I one choice for K: solve linear quadratic control problem with xdes = 0
I solution ut is a linear function of xinit, so u1 can be written as

u1 = Kxinit

I columns of K can be found by computing u1 for xinit = e1, . . . , en
I use this K as state feedback gain matrix
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Example
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I system matrices of previous example
I blue curve uses optimal linear quadratic control for T = 100
I red curve uses simple linear state feedback ut = Kxt
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Outline

Portfolio optimization

Linear quadratic control

Linear quadratic state estimation
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State estimation

I linear dynamical system model:

xt+1 = Atxt + Btwt, yt = Ctxt + vt, t = 1, 2, . . .

I xt is state (n-vector)

I yt is measurement (p-vector)

I wt is input or process noise (m-vector)

I vt is measurement noise or measurement residual (p-vector)

I we know At, Bt, Ct, and measurements y1, . . . , yT

I wt, vt are unknown, but assumed small

I state estimation: estimate/guess x1, . . . , xT
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Least squares state estimation

minimize Jmeas + 𝜆Jproc
subject to xt+1 = Atxt + Btwt, t = 1, . . . , T − 1

I variables: states x1, . . . , xT and input noise w1, . . . ,wT−1

I primary objective Jmeas is sum of squares of measurement residuals:

Jmeas = ‖C1x1 − y1‖2 + · · · + ‖CTxT − yT ‖2

I secondary objective Jproc is sum of squares of process noise

Jproc = ‖w1‖2 + · · · + ‖wT−1‖2

I 𝜆 > 0 is a parameter, trades off measurement and process errors
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Constrained least squares formulation

minimize ‖C1x1 − y1‖2 + · · · + ‖CTxT − yT ‖2 + 𝜆(‖w1‖2 + · · · + ‖wT−1‖2)
subject to xt+1 = Atxt + Btwt, t = 1, . . . , T − 1

I can be written as
minimize ‖Ãz − b̃‖2

subject to C̃z = d̃

I vector z contains the Tn + (T − 1)m variables:

z = (x1, . . . , xT ,w1, . . . ,wT−1)
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Constrained least squares formulation

Ã =



C1 0 · · · 0 0 · · · 0
0 C2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · CT 0 · · · 0
0 0 · · · 0

√
𝜆I · · · 0

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · √
𝜆I


, b̃ =



y1
y2
...

yT
0
...
0


C̃ =


A1 −I 0 · · · 0 0 B1 0 · · · 0
0 A2 −I · · · 0 0 0 B2 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · AT−1 −I 0 0 · · · BT−1


, d̃ = 0
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Missing measurements

I suppose we have measurements yt for t ∈ T , a subset of {1, . . . , T}
I measurements for t ∉ T are missing

I to estimate states, use same formulation but with

Jmeas =
∑︁
t∈T

‖Ctxt − yt‖2

I from estimated states x̂t, can estimate missing measurements

ŷt = Ctx̂t, t ∉ T
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Example

At =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Bt =


0 0
0 0
1 0
0 1

 , Ct =

[
1 0 0 0
0 1 0 0

]

I simple model of mass moving in a 2-D plane

I xt = (pt, zt): 2-vector pt is position, 2-vector zt is the velocity

I yt = Ctxt + wt is noisy measurement of position

I T = 100
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Measurements and true positions
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I solid line is exact position Ctxt

I 100 noisy measurements yt shown as circles
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Position estimates

𝜆 = 1 𝜆 = 103 𝜆 = 105

blue lines show position estimates for three values of 𝜆
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Cross-validation

I randomly remove 20% (say) of the measurements and use as test set

I for many values of 𝜆, estimate states using other (training) measurements

I for each 𝜆, evaluate RMS measurement residuals on test set

I choose 𝜆 to (approximately) minimize the RMS test residuals
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Example
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I cross-validation method applied to previous example
I remove 20 of the 100 measurements
I suggests using 𝜆 ≈ 103
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