Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi

16. Constrained least squares

Outline

[Linearly constrained least squares](#page-2-0)

[Least norm problem](#page-8-0)

[Solving the constrained least squares problem](#page-14-0)

Least squares with equality constraints

▶ the (linearly) *constrained least squares problem* (CLS) is

minimize $||Ax - b||^2$ subject to $Cx = d$

- \triangleright variable (to be chosen/found) is *n*-vector *x*
- \blacktriangleright *m* \times *n* matrix *A*, *m*-vector *b*, *p* \times *n* matrix *C*, and *p*-vector *d* are *problem data* (*i.e.*, they are given)
- \blacktriangleright $||Ax b||^2$ is the *objective function*
- \triangleright $Cx = d$ are the *equality constraints*
- \blacktriangleright *x* is *feasible* if $Cx = d$
- ▶ \hat{x} is a *solution* of CLS if $C\hat{x} = d$ and $||A\hat{x} b||^2 \le ||Ax b||^2$ holds for any *n*-vector *x* that satisfies $Cx = d$

Least squares with equality constraints

- \triangleright CLS combines solving linear equations with least squares problem
- \blacktriangleright like a bi-objective least squares problem, with infinite weight on second objective $||Cx - d||^2$

Piecewise-polynomial fitting

 \blacktriangleright *piecewise-polynomial* \hat{f} has form

$$
\hat{f}(x) = \begin{cases} p(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3 & x \le a \\ q(x) = \theta_5 + \theta_6 x + \theta_7 x^2 + \theta_8 x^3 & x > a \end{cases}
$$

(*a* is given)

$$
\bullet \text{ we require } p(a) = q(a), p'(a) = q'(a)
$$

If \hat{f} to data (x_i, y_i) , $i = 1, ..., N$ by minimizing sum square error

$$
\sum_{i=1}^N (\hat{f}(x_i) - y_i)^2
$$

 \triangleright can express as a constrained least squares problem

Example

Piecewise-polynomial fitting

constraints are (linear equations in θ)

$$
\theta_1 + \theta_2 a + \theta_3 a^2 + \theta_4 a^3 - \theta_5 - \theta_6 a - \theta_7 a^2 - \theta_8 a^3 = 0
$$

$$
\theta_2 + 2\theta_3 a + 3\theta_4 a^2 - \theta_6 - 2\theta_7 a - 3\theta_8 a^2 = 0
$$

▶ prediction error on (x_i, y_i) is $a_i^T \theta - y_i$, with

$$
(a_i)_j = \begin{cases} (1, x_i, x_i^2, x_i^3, 0, 0, 0, 0) & x_i \le a \\ (0, 0, 0, 0, 1, x_i, x_i^2, x_i^3) & x_i > a \end{cases}
$$

► sum square error is $||A\theta - y||^2$, where a_i^T are rows of *A*

Outline

[Linearly constrained least squares](#page-2-0)

[Least norm problem](#page-8-0)

[Solving the constrained least squares problem](#page-14-0)

Least norm problem

- **Exercise** special case of constrained least squares problem, with $A = I$, $b = 0$
- **•** *least-norm problem:*

i.e., find the smallest vector that satisfies a set of linear equations

Force sequence

- \blacktriangleright unit mass on frictionless surface, initially at rest
- \blacktriangleright 10-vector *f* gives forces applied for one second each
- \blacktriangleright final velocity and position are

$$
v^{\text{fin}} = f_1 + f_2 + \dots + f_{10}
$$

\n
$$
p^{\text{fin}} = (19/2)f_1 + (17/2)f_2 + \dots + (1/2)f_{10}
$$

Let's find f for which
$$
v^{\text{fin}} = 0
$$
, $p^{\text{fin}} = 1$

$$
f^{bb} = (1, -1, 0, \dots, 0)
$$
 works (called 'bang-bang')

Bang-bang force sequence

Least norm force sequence

- let's find least-norm *f* that satisfies $p^{\text{fin}} = 1$, $v^{\text{fin}} = 0$
- \blacktriangleright least-norm problem:

minimize
$$
||f||^2
$$

subject to $\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 19/2 & 17/2 & \cdots & 3/2 & 1/2 \end{bmatrix} f = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

with variable *f*

Solution f^{ln} satisfies $||f^{\text{ln}}||^2 = 0.0121$ (compare to $||f^{\text{bb}}||^2 = 2$)

Least norm force sequence

Outline

[Linearly constrained least squares](#page-2-0)

[Least norm problem](#page-8-0)

[Solving the constrained least squares problem](#page-14-0)

Optimality conditions via calculus

to solve constrained optimization problem

minimize
$$
f(x) = ||Ax - b||^2
$$

subject to $c_i^T x = d_i, \quad i = 1, ..., p$

1. form *Lagrangian* function, with *Lagrange multipliers* z_1, \ldots, z_p

$$
L(x, z) = f(x) + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)
$$

2. optimality conditions are

$$
\frac{\partial L}{\partial x_i}(\hat{x}, z) = 0, \quad i = 1, \dots, n, \qquad \frac{\partial L}{\partial z_i}(\hat{x}, z) = 0, \quad i = 1, \dots, p
$$

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.14

Optimality conditions via calculus

$$
\sum \frac{\partial L}{\partial z_i}(\hat{x}, z) = c_i^T \hat{x} - d_i = 0
$$
, which we already knew

 \blacktriangleright first *n* equations are more interesting:

$$
\frac{\partial L}{\partial x_i}(\hat{x}, z) = 2 \sum_{j=1}^n (A^T A)_{ij} \hat{x}_j - 2(A^T b)_i + \sum_{j=1}^p z_j c_i = 0
$$

- ▶ in matrix-vector form: $2(A^T A)\hat{x} 2A^T b + C^T z = 0$
- I put together with *Cx*ˆ = *d* to get *Karush–Kuhn–Tucker (KKT) conditions*

$$
\left[\begin{array}{cc} 2A^T A & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} 2A^T b \\ d \end{array}\right]
$$

a square set of $n + p$ linear equations in variables \hat{x} , z

 \triangleright KKT equations are extension of normal equations to CLS

Solution of constrained least squares problem

 \triangleright assuming the KKT matrix is invertible, we have

$$
\left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{cc} 2A^T A & C^T \\ C & 0 \end{array}\right]^{-1} \left[\begin{array}{c} 2A^T b \\ d \end{array}\right]
$$

 \triangleright KKT matrix is invertible if and only if

^C has linearly independent rows, A C has linearly independent columns

- Implies $m + p \ge n$, $p \le n$
- ► can compute \hat{x} in $2mn^2 + 2(n+p)^3$ flops; order is n^3 flops

Direct verification of solution

ightharpoonup to show that \hat{x} is solution, suppose x satisfies $Cx = d$

 \blacktriangleright then

$$
||Ax - b||2 = ||(Ax - A\hat{x}) + (A\hat{x} - b)||2
$$

=
$$
||A(x - \hat{x})||2 + ||A\hat{x} - b||2 + 2(Ax - A\hat{x})T(A\hat{x} - b)
$$

► expand last term, using $2A^T(A\hat{x} - b) = -C^T z$, $Cx = C\hat{x} = d$:

$$
2(Ax - A\hat{x})^T (A\hat{x} - b) = 2(x - \hat{x})^T A^T (A\hat{x} - b)
$$

= - (x - \hat{x})^T C^T z
= - (C(x - \hat{x}))^T z
= 0

► so $||Ax - b||^2 = ||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 \ge ||A\hat{x} - b||^2$

If and we conclude \hat{x} is solution

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.17

Solution of least-norm problem

- least-norm problem: minimize $||x||^2$ subject to $Cx = d$
- \triangleright matrix $\begin{bmatrix} I \\ C \end{bmatrix}$ *C* always has independent columns
- \triangleright we assume that *C* has independent rows
- \blacktriangleright optimality condition reduces to

$$
\left[\begin{array}{cc} 2I & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} 0 \\ d \end{array}\right]
$$

- ► so $\hat{x} = -(1/2)C^T z$; second equation is then $-(1/2)CC^T z = d$
- ► plug $z = -2(CC^T)^{-1}d$ into first equation to get

$$
\hat{x} = C^T (CC^T)^{-1} d = C^{\dagger} d
$$

where C^\dagger is (our old friend) the pseudo-inverse

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.18

so when *C* has linearly independent rows:

- \blacktriangleright C^{\dagger} is a right inverse of C
- ▶ so for any $d, \hat{x} = C^{\dagger}d$ satisfies $C\hat{x} = d$
- **If** and we now know: \hat{x} is the *smallest* solution of $Cx = d$