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16. Constrained least squares
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Least squares with equality constraints

I the (linearly) constrained least squares problem (CLS) is

minimize ‖Ax − b‖2

subject to Cx = d

I variable (to be chosen/found) is n-vector x

I m × n matrix A, m-vector b, p × n matrix C, and p-vector d are problem
data (i.e., they are given)

I ‖Ax − b‖2 is the objective function

I Cx = d are the equality constraints

I x is feasible if Cx = d

I x̂ is a solution of CLS if Cx̂ = d and ‖Ax̂ − b‖2 ≤ ‖Ax − b‖2 holds for any
n-vector x that satisfies Cx = d
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Least squares with equality constraints

I CLS combines solving linear equations with least squares problem

I like a bi-objective least squares problem, with infinite weight on second
objective ‖Cx − d‖2
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Piecewise-polynomial fitting

I piecewise-polynomial f̂ has form

f̂ (x) =
{

p(x) = 𝜃1 + 𝜃2x + 𝜃3x2 + 𝜃4x3 x ≤ a
q(x) = 𝜃5 + 𝜃6x + 𝜃7x2 + 𝜃8x3 x > a

(a is given)

I we require p(a) = q(a), p′(a) = q′(a)
I fit f̂ to data (xi, yi), i = 1, . . . ,N by minimizing sum square error

N∑︁
i=1

(f̂ (xi) − yi)2

I can express as a constrained least squares problem
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Example
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Piecewise-polynomial fitting

I constraints are (linear equations in 𝜃)

𝜃1 + 𝜃2a + 𝜃3a2 + 𝜃4a3 − 𝜃5 − 𝜃6a − 𝜃7a2 − 𝜃8a3 = 0
𝜃2 + 2𝜃3a + 3𝜃4a2 − 𝜃6 − 2𝜃7a − 3𝜃8a2 = 0

I prediction error on (xi, yi) is aT
i 𝜃 − yi, with

(ai)j =
{ (1, xi, x2

i , x
3
i , 0, 0, 0, 0) xi ≤ a

(0, 0, 0, 0, 1, xi, x2
i , x

3
i ) xi > a

I sum square error is ‖A𝜃 − y‖2, where aT
i are rows of A
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Least norm problem

I special case of constrained least squares problem, with A = I, b = 0

I least-norm problem:
minimize ‖x‖2

subject to Cx = d

i.e., find the smallest vector that satisfies a set of linear equations
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Force sequence

I unit mass on frictionless surface, initially at rest

I 10-vector f gives forces applied for one second each

I final velocity and position are

vfin = f1 + f2 + · · · + f10

pfin = (19/2)f1 + (17/2)f2 + · · · + (1/2)f10

I let’s find f for which vfin = 0, pfin = 1

I f bb = (1,−1, 0, . . . , 0) works (called ‘bang-bang’)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.9



Bang-bang force sequence
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Least norm force sequence

I let’s find least-norm f that satisfies pfin = 1, vfin = 0

I least-norm problem:

minimize ‖f ‖2

subject to
[

1 1 · · · 1 1
19/2 17/2 · · · 3/2 1/2

]
f =

[
0
1

]
with variable f

I solution f ln satisfies ‖f ln‖2 = 0.0121 (compare to ‖f bb‖2 = 2)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 16.11



Least norm force sequence
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Optimality conditions via calculus

to solve constrained optimization problem

minimize f (x) = ‖Ax − b‖2

subject to cT
i x = di, i = 1, . . . , p

1. form Lagrangian function, with Lagrange multipliers z1, . . . , zp

L(x, z) = f (x) + z1 (cT
1 x − d1) + · · · + zp (cT

p x − dp)

2. optimality conditions are

𝜕L
𝜕xi

(x̂, z) = 0, i = 1, . . . , n, 𝜕L
𝜕zi

(x̂, z) = 0, i = 1, . . . , p
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Optimality conditions via calculus

I
𝜕L
𝜕zi

(x̂, z) = cT
i x̂ − di = 0, which we already knew

I first n equations are more interesting:

𝜕L
𝜕xi

(x̂, z) = 2
n∑︁

j=1
(ATA)ijx̂j − 2(ATb)i +

p∑︁
j=1

zjci = 0

I in matrix-vector form: 2(ATA)x̂ − 2ATb + CTz = 0

I put together with Cx̂ = d to get Karush–Kuhn–Tucker (KKT) conditions[
2ATA CT

C 0

] [
x̂
z

]
=

[
2ATb

d

]
a square set of n + p linear equations in variables x̂, z

I KKT equations are extension of normal equations to CLS
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Solution of constrained least squares problem

I assuming the KKT matrix is invertible, we have[
x̂
z

]
=

[
2ATA CT

C 0

]−1 [ 2ATb
d

]
I KKT matrix is invertible if and only if

C has linearly independent rows,
[

A
C

]
has linearly independent columns

I implies m + p ≥ n, p ≤ n

I can compute x̂ in 2mn2 + 2(n + p)3 flops; order is n3 flops
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Direct verification of solution

I to show that x̂ is solution, suppose x satisfies Cx = d

I then

‖Ax − b‖2 = ‖(Ax − Ax̂) + (Ax̂ − b)‖2

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(Ax − Ax̂)T (Ax̂ − b)
I expand last term, using 2AT (Ax̂ − b) = −CTz, Cx = Cx̂ = d:

2(Ax − Ax̂)T (Ax̂ − b) = 2(x − x̂)TAT (Ax̂ − b)
= −(x − x̂)TCTz
= −(C(x − x̂))Tz
= 0

I so ‖Ax − b‖2 = ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 ≥ ‖Ax̂ − b‖2

I and we conclude x̂ is solution
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Solution of least-norm problem

I least-norm problem: minimize ‖x‖2 subject to Cx = d

I matrix
[

I
C

]
always has independent columns

I we assume that C has independent rows

I optimality condition reduces to[
2I CT

C 0

] [
x̂
z

]
=

[
0
d

]
I so x̂ = −(1/2)CTz; second equation is then −(1/2)CCTz = d

I plug z = −2(CCT )−1d into first equation to get

x̂ = CT (CCT )−1d = C†d

where C† is (our old friend) the pseudo-inverse
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so when C has linearly independent rows:
I C† is a right inverse of C

I so for any d, x̂ = C†d satisfies Cx̂ = d

I and we now know: x̂ is the smallest solution of Cx = d
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