Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi 14. Least squares classification

Outline

Classification

Least squares classification

Multi-class classifiers

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Classification

data fitting with outcome that takes on (non-numerical) values like

- TRUE OF FALSE
- SPAM OF NOT SPAM
- DOG, HORSE, OF MOUSE
- outcome values are called *labels* or *categories*
- data fitting is called *classification*
- we start with case when there are two possible outcomes
- called Boolean or 2-way classification
- ▶ we encode outcomes as +1 (TRUE) and -1 (FALSE)
- classifier has form $\hat{y} = \hat{f}(x), f : \mathbf{R}^n \to \{-1, +1\}$

Applications

- email spam detection
 - x contains features of an email message (word counts, ...)
- financial transaction fraud detection
 - x contains features of proposed transaction, initiator
- document classification (say, politics or not)
 - x is word count histogram of document
- disease detection
 - x contains patient features, results of medical tests
- digital communications receiver
 - y is transmitted bit; x contain n measurements of received signal

Prediction errors

- data point (x, y), predicted outcome $\hat{y} = \hat{f}(x)$
- only four possibilities:
 - True positive. y = +1 and $\hat{y} = +1$.
 - True negative. y = -1 and $\hat{y} = -1$.
 - (in these two cases, the prediction is *correct*)
 - False positive. y = -1 and $\hat{y} = +1$.
 - False negative. y = +1 and $\hat{y} = -1$.

(in these two cases, the prediction is *wrong*)

the errors have many other names, like Type I and Type II

Confusion matrix

▶ given data set $x^{(1)}, \ldots, x^{(N)}, y^{(1)}, \ldots, y^{(N)}$ and classifier \hat{f}

count each of the four outcomes

	$\hat{y} = +1$	$\hat{y} = -1$	Total
<i>y</i> = +1	$N_{\rm tp}$	$N_{ m fn}$	Np
y = -1	$N_{ m fp}$	$N_{ m tn}$	$N_{\rm n}$
All	$N_{\rm tp} + N_{\rm fp}$	$N_{\rm fn} + N_{\rm tp}$	Ν

- off-diagonal terms are prediction errors
- many error rates and accuracy measures are used
 - error rate is $(N_{\rm fp} + N_{\rm fn})/N$
 - true positive (or recall) rate is $N_{\rm tp}/N_{\rm p}$
 - false positive rate (or false alarm rate) is $N_{\rm fp}/N_{\rm n}$
- a proposed classifier is judged by its error rate(s) on a test set

Example

spam filter performance on a test set (say)

	$\hat{y} = +1$ (spam)	$\hat{y} = -1$ (not spam)	Total
y = +1 (SPAM)	95	32	127
y = -1 (not spam)	19	1120	1139
All	114	1152	1266

error rate is (19 + 32)/1266 = 4.03%

• false positive rate is 19/1139 = 1.67%

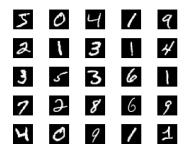
Outline

Classification

Least squares classification

Multi-class classifiers

Introduction to Applied Linear Algebra


Boyd & Vandenberghe

Least squares classification

- fit model f to encoded (±1) y⁽ⁱ⁾ values using standard least squares data fitting
- ▶ $\tilde{f}(x)$ should be near +1 when y = +1, and near -1 when y = -1
- $\tilde{f}(x)$ is a number
- use model $\hat{f}(x) = \operatorname{sign}(\tilde{f}(x))$
- (size of $\tilde{f}(x)$ is related to the 'confidence' in the prediction)

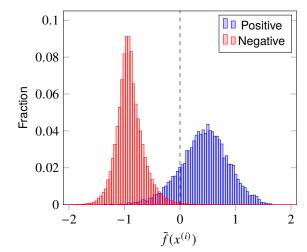
Handwritten digits example

MNIST data set of 70000 28 × 28 images of digits 0, ..., 9

- divided into training set (60000) and test set (10000)
- x is 494-vector, constant 1 plus the 493 pixel values with nonzero values in at least 600 training examples
- ▶ y = +1 if digit is 0; -1 otherwise

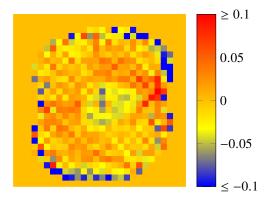
Least squares classifier results

	$\hat{y} = +1$	$\hat{y} = -1$	Total
<i>y</i> = +1	5158	765	5923
y = -1	167	53910	54077
All	5325	54675	60000


training set results (error rate 1.6%)

test set results (error rate 1.6%)

	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	864	116	980
y = -1	42	8978	9020
All	906	9094	10000

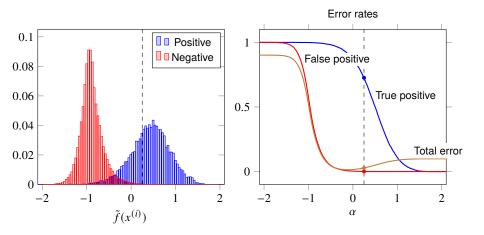

▶ we can likely achieve 1.6% error rate on unseen images

Distribution of least squares fit

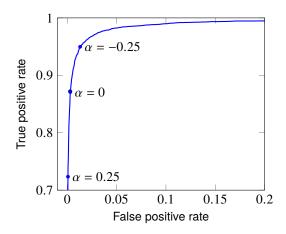
distribution of values of $\tilde{f}(\boldsymbol{x}^{(i)})$ over training set

Coefficients in least squares classifier

Skewed decision threshold


• use predictor
$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x) - \alpha)$$
, *i.e.*,

$$\hat{f}(x) = \begin{cases} +1 & \tilde{f}(x) \ge \alpha \\ -1 & \tilde{f}(x) < \alpha \end{cases}$$


- α is the decision threshold
- for positive α , false positive rate is lower but so is true positive rate
- for negative α , false positive rate is higher but so is true positive rate

 trade off curve of true positive versus false positive rates is called receiver operating characteristic (ROC)

Example

ROC curve

Outline

Classification

Least squares classification

Multi-class classifiers

Multi-class classifiers

- we have K > 2 possible labels, with label set $\{1, \ldots, K\}$
- predictor is $\hat{f} : \mathbf{R}^n \to \{1, \dots, K\}$
- for given predictor and data set, confusion matrix is $K \times K$
- some off-diagonal entries may be much worse than others

Examples

- handwritten digit classification
 - guess the digit written, from the pixel values
- marketing demographic classification
 - guess the demographic group, from purchase history
- disease diagnosis
 - guess diagnosis from among a set of candidates, from test results, patient features
- translation word choice
 - choose how to translate a word into several choices, given context features
- document topic prediction
 - guess topic from word count histogram

Least squares multi-class classifier

- create a least squares classifier for each label versus the others
- \tilde{f}_{ℓ} is our model that fits +1 for $y = \ell$, -1 for $y \neq \ell$
- take as classifier

$$\hat{f}(x) = \operatorname*{argmax}_{\ell \in \{1, \dots, K\}} \tilde{f}_{\ell}(x)$$

(*i.e.*, choose ℓ with largest value of $\tilde{f}_{\ell}(x)$)

for example, with

$$\tilde{f}_1(x) = -0.7, \qquad \tilde{f}_2(x) = +0.2, \qquad \tilde{f}_3(x) = +0.8$$
 we choose $\hat{f}(x) = 3$

Handwritten digit classification

confusion matrix, test set

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	944	0	1	2	2	8	13	2	7	1	980
1	0	1107	2	2	3	1	5	1	14	0	1135
2	18	54	815	26	16	0	38	22	39	4	1032
3	4	18	22	884	5	16	10	22	20	9	1010
4	0	22	6	0	883	3	9	1	12	46	982
5	24	19	3	74	24	656	24	13	38	17	892
6	17	9	10	0	22	17	876	0	7	0	958
7	5	43	14	6	25	1	1	883	1	49	1028
8	14	48	11	31	26	40	17	13	756	18	974
9	16	10	3	17	80	0	1	75	4	803	1009
All	1042	1330	887	1042	1086	742	994	1032	898	947	10000

error rate is around 14% (same as for training set)

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Adding new features

- let's add 5000 random features (!), $\max\{(Rx)_j, 0\}$
 - R is 5000 × 494 matrix with entries ±1, chosen randomly
- now use least squares classification with 5494 feature vector

- results: training set error 1.5%, test set error 2.6%
- can do better with a little more thought in generating new features
- indeed, even better than humans can do (!!)

Results with new features

confusion matrix, test set

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	972	0	0	2	0	1	1	1	3	0	980
1	0	1126	3	1	1	0	3	0	1	0	1135
2	6	0	998	3	2	0	4	7	11	1	1032
3	0	0	3	977	0	13	0	5	8	4	1010
4	2	1	3	0	953	0	6	3	1	13	982
5	2	0	1	5	0	875	5	0	3	1	892
6	8	3	0	0	4	6	933	0	4	0	958
7	0	8	12	0	2	0	1	992	3	10	1028
8	3	1	3	6	4	3	2	2	946	4	974
9	4	3	1	12	11	7	1	3	3	964	1009
All	997	1142	1024	1006	977	905	956	1013	983	997	10000