Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi

10. Matrix multiplication

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Householder transformations

Introduction to Applied Linear Algebra

Matrix multiplication

• can multiply $m \times p$ matrix A and $p \times n$ matrix B to get C = AB:

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i1} B_{1j} + \dots + A_{ip} B_{pj}$$

for i = 1, ..., m, j = 1, ..., n

• to get C_{ij} : move along *i*th row of A, *j*th column of B

example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product $a^T b$
- matrix-vector multiplication Ax
- outer product of *m*-vector *a* and *n*-vector *b*

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

Properties

- (AB)C = A(BC), so both can be written ABC
- $\blacktriangleright A(B+C) = AB + AC$
- $\blacktriangleright (AB)^T = B^T A^T$
- AI = A and IA = A
- ► AB = BA does not hold in general

Block matrices

block matrices can be multiplied using the same formula, e.g.,

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{cc} E & F \\ G & H \end{array}\right] = \left[\begin{array}{cc} AE + BG & AF + BH \\ CE + DG & CF + DH \end{array}\right]$$

(provided the products all make sense)

Column interpretation

denote columns of B by b_i:

$$B = \left[\begin{array}{cccc} b_1 & b_2 & \cdots & b_n \end{array} \right]$$

then we have

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$
$$= \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

so AB is 'batch' multiply of A times columns of B

Multiple sets of linear equations

• given k systems of linear equations, with same $m \times n$ coefficient matrix

$$Ax_i = b_i, \quad i = 1, \ldots, k$$

- write in compact matrix form as AX = B
- $\blacktriangleright X = [x_1 \cdots x_k], B = [b_1 \cdots b_k]$

Inner product interpretation

• with a_i^T the rows of A, b_j the columns of B, we have

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_n \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_n \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_n \end{bmatrix}$$

so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- let A be an $m \times n$ matrix with columns a_1, \ldots, a_n
- the Gram matrix of A is

$$G = A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}$$

- Gram matrix gives all inner products of columns of A
- example: $G = A^T A = I$ means columns of A are orthonormal

Complexity

- to compute $C_{ij} = (AB)_{ij}$ is inner product of *p*-vectors
- so total required flops is (mn)(2p) = 2mnp flops
- multiplying two 1000×1000 matrices requires 2 billion flops
- ... and can be done in well under a second on current computers

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Householder transformations

Composition of linear functions

- A is an $m \times p$ matrix, B is $p \times n$
- define $f : \mathbf{R}^p \to \mathbf{R}^m$ and $g : \mathbf{R}^n \to \mathbf{R}^p$ as

$$f(u) = Au, \qquad g(v) = Bv$$

- \blacktriangleright f and g are linear functions
- *composition* of *f* and *g* is $h : \mathbf{R}^n \to \mathbf{R}^m$ with h(x) = f(g(x))

we have

$$h(x) = f(g(x)) = A(Bx) = (AB)x$$

- composition of linear functions is linear
- associated matrix is product of matrices of the functions

Second difference matrix

▶ D_n is $(n-1) \times n$ difference matrix:

$$D_n x = (x_2 - x_1, \dots, x_n - x_{n-1})$$

▶ D_{n-1} is $(n-2) \times (n-1)$ difference matrix:

$$D_{n-1}y = (y_2 - y_1, \dots, y_{n-1} - y_{n-2})$$

• $\Delta = D_{n-1}D_n$ is $(n-2) \times n$ second difference matrix:

$$\Delta x = (x_1 - 2x_2 + x_3, x_2 - 2x_3 + x_4, \dots, x_{n-2} - 2x_{n-1} + x_n)$$

• for
$$n = 5$$
, $\Delta = D_{n-1}D_n$ is

$$\begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Householder transformations

Matrix powers

- for A square, A^2 means AA, and same for higher powers
- with convention $A^0 = I$ we have $A^k A^l = A^{k+l}$
- negative powers later; fractional powers in other courses

Directed graph

• $n \times n$ matrix A is adjacency matrix of directed graph:

$$A_{ij} = \begin{cases} 1 & \text{there is a edge from vertex } j \text{ to vertex } i \\ 0 & \text{otherwise} \end{cases}$$

example:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Paths in directed graph

square of adjacency matrix:

$$(A^2)_{ij} = \sum_{k=1}^n A_{ik} A_{kj}$$

- $(A^2)_{ij}$ is number of paths of length 2 from *j* to *i*
- for the example,

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e.g., there are two paths from 4 to 3 (via 3 and 5)

• more generally, $(A^{\ell})_{ij}$ = number of paths of length ℓ from j to i

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Householder transformations

Introduction to Applied Linear Algebra

Gram–Schmidt in matrix notation

- ▶ run Gram–Schmidt on columns a_1, \ldots, a_k of $n \times k$ matrix A
- ▶ if columns are linearly independent, get orthonormal q_1, \ldots, q_k
- define $n \times k$ matrix Q with columns q_1, \ldots, q_k

 $\triangleright Q^T Q = I$

from Gram–Schmidt algorithm

$$a_i = (q_1^T a_i)q_1 + \dots + (q_{i-1}^T a_i)q_{i-1} + \|\tilde{q}_i\|q_i$$

= $R_{1i}q_1 + \dots + R_{ii}q_i$

with $R_{ij} = q_i^T a_j$ for i < j and $R_{ii} = \|\tilde{q}_i\|$

• defining $R_{ij} = 0$ for i > j we have A = QR

R is upper triangular, with positive diagonal entries

QR factorization

- A = QR is called QR factorization of A
- ► factors satisfy $Q^T Q = I$, R upper triangular with positive diagonal entries
- can be computed using Gram–Schmidt algorithm (or some variations)
- has a huge number of uses, which we'll see soon

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Householder transformations

Householder transforms for QR factorization

- matrix multiplication to compute QR factorization
- Householder transform: for unit vector u, $H_u = I 2uu^T$

Properties of Householder transforms

symmetric and orthogonal:

$$H_{u}^{T} = (I - 2uu^{T})^{T} = I - 2(uu^{T})^{T} = I - 2uu^{T}$$

and

$$H_u^T H_u = H_u^2 = I - 4uu^T uu^T + 4uu^T uu^T = I$$

▶ product of any number is orthogonal: for unit norm vectors u_1, u_2, \ldots, u_k

$$Q=H_{u_1}H_{u_2}\cdots H_{u_k}$$

satisfies

$$Q^{T}Q = H_{u_{k}}H_{u_{k-1}}\cdots H_{u_{2}}H_{u_{1}}H_{u_{1}}H_{u_{2}}\cdots H_{u_{k}}$$

= $H_{u_{k}}H_{u_{k-1}}\cdots H_{u_{2}}H_{u_{2}}\cdots H_{u_{k-1}}H_{u_{k}} = \cdots = I.$

Introduction to Applied Linear Algebra

Boyd & Vandenberghe

Annihilation with Householders

▶ for unit-norm *n*-vector $x \in \mathbf{R}^n$, find *u* so that

$$H_u x = e_1$$

• take
$$u = (x - e_1)/||x - e_1||$$
, verify $H_u x = e_1$

Introduction to Applied Linear Algebra

Annihilating below diagonals

- start with $n \times k$ matrix A with columns a_1, a_2, \ldots, a_k
- ▶ annihilate below diagonal for first column: if $a_1 \neq 0$, set $v = a_1/||a_1||$

$$H_u = I - 2uu^T$$
 for $u = \frac{v - e_1}{\|v - e_1\|}$

then

$$H_u A = \begin{bmatrix} H_u a_1 & H_u a_2 & \cdots & H_u a_k \end{bmatrix} = \begin{bmatrix} \|a_1\| & * \\ 0 & \tilde{A}_1 \end{bmatrix}$$

▶ recurse: for block matrix with R_i an $i \times i$ upper triangular matrix

$$\begin{bmatrix} R_i & * \\ 0 & \tilde{A}_{i-1} \end{bmatrix}$$

then for $\tilde{A}_{i-1} = [\tilde{a}_1 \cdots \tilde{a}_{k-i}]$, choosing unit \tilde{u} as above for \tilde{a}_1 :

$$\begin{bmatrix} I & 0 \\ 0 & H_{\tilde{u}} \end{bmatrix} \begin{bmatrix} R_i & * \\ 0 & \tilde{A}_{i-1} \end{bmatrix} = \begin{bmatrix} R_i & * \\ 0 & \left(\|\tilde{a}_1\| & * \\ 0 & \tilde{A}_i \right) \end{bmatrix}$$

Householder algorithm for QR factorization

given $n \times k$ matrix A with columns a_1, \ldots, a_k initialize $\tilde{A}_0 = A$

- for $i = 0, ..., \min\{k, n 2\}$
 - 1. find first column $\tilde{a} \in \mathbf{R}^{n-i}$ of \tilde{A}_i
 - 2. test for linear dependence: if $\tilde{a} = 0$, recurse on \tilde{A}_{i+1} (the lower right $(n - i - 1) \times (n - i - 1)$ block of \tilde{A}_i)
 - 3. normalize: $v = \tilde{a}/\|\tilde{a}\|$
 - 4. find projector: $u = (v e_1)/||v e_1|| \in \mathbf{R}^{n-i}$
 - 5. *construct* $(n i) \times (n i)$ Householder matrix $H_i = I 2uu^T$
 - 6. *apply* H_i to obtain

$$\begin{bmatrix} r_{ii} & * \\ 0 & \tilde{A}_i \end{bmatrix} = H_i \tilde{A}_{i-1}$$

▶ final output: A = QR, where for $m = \min\{n - 2, k\}$

$$Q = H_0 \begin{bmatrix} 1 & 0 \\ 0 & H_1 \end{bmatrix} \begin{bmatrix} I_2 & 0 \\ 0 & H_2 \end{bmatrix} \cdots \begin{bmatrix} I_m & 0 \\ 0 & H_m \end{bmatrix} \text{ and } R = Q^T A$$