Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi

10. Matrix multiplication

Outline

[Matrix multiplication](#page-2-0)

[Composition of linear functions](#page-12-0)

[Matrix powers](#page-15-0)

[QR factorization](#page-19-0)

[Householder transformations](#page-22-0)

Matrix multiplication

ightharpoontring can multiply $m \times p$ matrix *A* and $p \times n$ matrix *B* to get $C = AB$:

$$
C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i1} B_{1j} + \dots + A_{ip} B_{pj}
$$

for $i = 1, ..., m, j = 1, ..., n$

 \triangleright to get C_{ii} : move along *i*th row of *A*, *j*th column of *B*

 \blacktriangleright example:

$$
\begin{bmatrix} -1.5 & 3 & 2 \ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \ 0 & -2 \ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \ -1 & 1 \end{bmatrix}
$$

Special cases of matrix multiplication

- Scalar-vector product (with scalar on right!) $x\alpha$
- inner product $a^T b$
- \blacktriangleright matrix-vector multiplication Ax
- \triangleright *outer product* of *m*-vector *a* and *n*-vector *b*

$$
ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}
$$

Properties

- \blacktriangleright $(AB)C = A(BC)$, so both can be written *ABC*
- \blacktriangleright *A*($B + C$) = $AB + AC$
- $(AB)^T = B^T A^T$
- \blacktriangleright *AI* = *A* and *IA* = *A*
- \blacktriangleright *AB* = *BA* does not hold in general

Block matrices

block matrices can be multiplied using the same formula, *e.g.*,

$$
\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{cc} E & F \\ G & H \end{array}\right] = \left[\begin{array}{cc} AE + BG & AF + BH \\ CE + DG & CF + DH \end{array}\right]
$$

(provided the products all make sense)

Column interpretation

 \blacktriangleright denote columns of *B* by b_i :

$$
B = \left[\begin{array}{cccc} b_1 & b_2 & \cdots & b_n \end{array} \right]
$$

 \blacktriangleright then we have

$$
AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}
$$

=
$$
\begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}
$$

 \triangleright so *AB* is 'batch' multiply of *A* times columns of *B*

Multiple sets of linear equations

If given *k* systems of linear equations, with same $m \times n$ coefficient matrix

$$
Ax_i = b_i, \quad i = 1, \ldots, k
$$

- ightharpoonupative write in compact matrix form as $AX = B$
- \blacktriangleright *X* = $[x_1 \cdots x_k], B = [b_1 \cdots b_k]$

Inner product interpretation

 \blacktriangleright with a_i^T the rows of *A*, b_j the columns of *B*, we have

$$
AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_n \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_n \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_n \end{bmatrix}
$$

 \triangleright so matrix product is all inner products of rows of A and columns of B , arranged in a matrix

Gram matrix

- It let *A* be an $m \times n$ matrix with columns a_1, \ldots, a_n
- ▶ the *Gram matrix* of *A* is

$$
G = A^{T} A = \begin{bmatrix} a_{1}^{T} a_{1} & a_{1}^{T} a_{2} & \cdots & a_{1}^{T} a_{n} \\ a_{2}^{T} a_{1} & a_{2}^{T} a_{2} & \cdots & a_{2}^{T} a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T} a_{1} & a_{n}^{T} a_{2} & \cdots & a_{n}^{T} a_{n} \end{bmatrix}
$$

- \blacktriangleright Gram matrix gives all inner products of columns of A
- **Example:** $G = A^T A = I$ means columns of *A* are orthonormal

Complexity

- ightharpoonupute $C_{ii} = (AB)_{ii}$ is inner product of *p*-vectors
- \triangleright so total required flops is $(mn)(2p) = 2mnp$ flops
- In multiplying two 1000×1000 matrices requires 2 billion flops
- \blacktriangleright ... and can be done in well under a second on current computers

Outline

[Matrix multiplication](#page-2-0)

[Composition of linear functions](#page-12-0)

[Matrix powers](#page-15-0)

[QR factorization](#page-19-0)

[Householder transformations](#page-22-0)

Composition of linear functions

- \blacktriangleright *A* is an $m \times p$ matrix, *B* is $p \times n$
- If define $f: \mathbb{R}^p \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ as

$$
f(u) = Au, \qquad g(v) = Bv
$$

- \blacktriangleright *f* and *g* are linear functions
- \triangleright *composition* of *f* and *g* is $h : \mathbf{R}^n \to \mathbf{R}^m$ with $h(x) = f(g(x))$

 \blacktriangleright we have

$$
h(x) = f(g(x)) = A(Bx) = (AB)x
$$

- \triangleright composition of linear functions is linear
- \triangleright associated matrix is product of matrices of the functions

Second difference matrix

 \triangleright *D_n* is $(n - 1) \times n$ difference matrix:

$$
D_n x = (x_2 - x_1, \ldots, x_n - x_{n-1})
$$

 \triangleright *D*_{*n*−1} is $(n-2) \times (n-1)$ difference matrix:

$$
D_{n-1}y = (y_2 - y_1, \ldots, y_{n-1} - y_{n-2})
$$

 $\Delta = D_{n-1}D_n$ is $(n-2) \times n$ second difference matrix:

$$
\Delta x = (x_1 - 2x_2 + x_3, x_2 - 2x_3 + x_4, \dots, x_{n-2} - 2x_{n-1} + x_n)
$$

$$
\bullet \ \ \text{for } n = 5, \, \Delta = D_{n-1}D_n \text{ is}
$$

$$
\begin{bmatrix} 1 & -2 & 1 & 0 & 0 \ 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 \ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \ 0 & -1 & 1 & 0 & 0 \ 0 & 0 & -1 & 1 & 0 \ 0 & 0 & 0 & -1 & 1 \end{bmatrix}
$$

Í

Outline

[Matrix multiplication](#page-2-0)

[Composition of linear functions](#page-12-0)

[Matrix powers](#page-15-0)

[QR factorization](#page-19-0)

[Householder transformations](#page-22-0)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 10.14

Matrix powers

- \blacktriangleright for *A* square, A^2 means AA , and same for higher powers
- ighthronource with convention $A^0 = I$ we have $A^k A^l = A^{k+l}$
- \blacktriangleright negative powers later; fractional powers in other courses

Directed graph

 \blacktriangleright $n \times n$ matrix *A* is adjacency matrix of directed graph:

$$
A_{ij} = \begin{cases} 1 & \text{there is a edge from vertex } j \text{ to vertex } i \\ 0 & \text{otherwise} \end{cases}
$$

 \blacktriangleright example:

$$
A = \left[\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]
$$

Paths in directed graph

 \blacktriangleright square of adjacency matrix:

$$
(A^2)_{ij} = \sum_{k=1}^n A_{ik} A_{kj}
$$

•
$$
(A^2)_{ij}
$$
 is number of paths of length 2 from *j* to *i*

 \blacktriangleright for the example,

$$
A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

e.g., there are two paths from 4 to 3 (via 3 and 5)

 \blacktriangleright more generally, $(A^{\ell})_{ij}$ = number of paths of length ℓ from *j* to *i*

Outline

[Matrix multiplication](#page-2-0)

[Composition of linear functions](#page-12-0)

[Matrix powers](#page-15-0)

[QR factorization](#page-19-0)

[Householder transformations](#page-22-0)

Gram–Schmidt in matrix notation

- **If** run Gram–Schmidt on columns a_1, \ldots, a_k of $n \times k$ matrix A
- if columns are linearly independent, get orthonormal q_1, \ldots, q_k
- \blacktriangleright define $n \times k$ matrix Q with columns q_1, \ldots, q_k

 \blacktriangleright $Q^TQ = I$

 \blacktriangleright from Gram–Schmidt algorithm

$$
a_i = (q_1^T a_i)q_1 + \cdots + (q_{i-1}^T a_i)q_{i-1} + ||\tilde{q}_i||q_i
$$

= $R_{1i}q_1 + \cdots + R_{ii}q_i$

with $R_{ij} = q_i^T a_j$ for $i < j$ and $R_{ii} = ||\tilde{q}_i||$

 \blacktriangleright defining $R_{ij} = 0$ for $i > j$ we have $A = QR$

 \blacktriangleright *R* is upper triangular, with positive diagonal entries

QR factorization

- $A = QR$ is called *QR factorization* of *A*
- **F** factors satisfy $Q^TQ = I$, R upper triangular with positive diagonal entries
- \triangleright can be computed using Gram–Schmidt algorithm (or some variations)
- ▶ has a *huge* number of uses, which we'll see soon

Outline

[Matrix multiplication](#page-2-0)

[Composition of linear functions](#page-12-0)

[Matrix powers](#page-15-0)

[QR factorization](#page-19-0)

[Householder transformations](#page-22-0)

Householder transforms for QR factorization

- **Inductable matrix multiplication to** *compute* QR factorization
- ► Householder transform: for unit vector $u, H_u = I 2uu^T$

Properties of Householder transforms

 \blacktriangleright symmetric and orthogonal:

$$
H_u^T = (I - 2uu^T)^T = I - 2(uu^T)^T = I - 2uu^T
$$

and

$$
H_u^T H_u = H_u^2 = I - 4uu^T uu^T + 4uu^T uu^T = I
$$

P product of any number is orthogonal: for unit norm vectors u_1, u_2, \ldots, u_k

$$
Q=H_{u_1}H_{u_2}\cdots H_{u_k}
$$

satisfies

$$
Q^T Q = H_{u_k} H_{u_{k-1}} \cdots H_{u_2} H_{u_1} H_{u_1} H_{u_2} \cdots H_{u_k}
$$

= $H_{u_k} H_{u_{k-1}} \cdots H_{u_2} H_{u_2} \cdots H_{u_{k-1}} H_{u_k} = \cdots = I.$

Introduction to Applied Linear Algebra Boyd & Vandenberghe 10.23

Annihilation with Householders

► for unit-norm *n*-vector $x \in \mathbb{R}^n$, find *u* so that

$$
H_u x = e_1
$$

► take
$$
u = (x - e_1) / ||x - e_1||
$$
, verify $H_u x = e_1$

Introduction to Applied Linear Algebra **Boyd & Vandenberghe** 10.24

Annihilating below diagonals

- If start with $n \times k$ matrix A with columns a_1, a_2, \ldots, a_k
- **•** annihilate below diagonal for first column: if $a_1 \neq 0$, set $v = a_1 / ||a_1||$

$$
H_u = I - 2uu^T \text{ for } u = \frac{v - e_1}{\|v - e_1\|}
$$

 \blacktriangleright then

$$
H_u A = \begin{bmatrix} H_u a_1 & H_u a_2 & \cdots & H_u a_k \end{bmatrix} = \begin{bmatrix} ||a_1|| & * \\ 0 & \tilde{A}_1 \end{bmatrix}
$$

F recurse: for block matrix with R_i an $i \times i$ upper triangular matrix

$$
\begin{bmatrix} R_i & * \\ 0 & \tilde{A}_{i-1} \end{bmatrix}
$$

then for $\tilde{A}_{i-1} = [\tilde{a}_1 \ \cdots \ \tilde{a}_{k-i}],$ choosing unit \tilde{u} as above for \tilde{a}_1 :

$$
\begin{bmatrix} I & 0 \\ 0 & H_{\tilde{u}} \end{bmatrix} \begin{bmatrix} R_i & * \\ 0 & \tilde{A}_{i-1} \end{bmatrix} = \begin{bmatrix} R_i & * \\ 0 & \begin{bmatrix} ||\tilde{a}_1|| & * \\ 0 & \tilde{A}_i \end{bmatrix} \end{bmatrix}
$$

Householder algorithm for QR factorization

given $n \times k$ matrix A with columns a_1, \ldots, a_k **initialize** $\tilde{A}_0 = A$ **for** $i = 0, \ldots, \min\{k, n-2\}$

- 1. *find first column* $\tilde{a} \in \mathbb{R}^{n-i}$ of \tilde{A}_i
- 2. test for linear dependence: if $\tilde{a} = 0$, recurse on \tilde{A}_{i+1} (the lower right $(n - i - 1) \times (n - i - 1)$ block of \tilde{A}_i)
- 3. *normalize:* $v = \tilde{a}/\|\tilde{a}\|$
- 4. *find projector:* $u = (v e_1)/\|v e_1\| \in \mathbf{R}^{n-i}$
- 5. *construct* $(n i) \times (n i)$ Householder matrix $H_i = I 2uu^T$
- 6. *apply* H_i to obtain

$$
\begin{bmatrix} r_{ii} & * \\ 0 & \tilde{A}_i \end{bmatrix} = H_i \tilde{A}_{i-1}
$$

 \triangleright final output: *A* = *QR*, where for *m* = min{*n* − 2, *k*}

$$
Q = H_0 \begin{bmatrix} 1 & 0 \\ 0 & H_1 \end{bmatrix} \begin{bmatrix} I_2 & 0 \\ 0 & H_2 \end{bmatrix} \cdots \begin{bmatrix} I_m & 0 \\ 0 & H_m \end{bmatrix}
$$
 and $R = Q^T A$