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Matrix multiplication

I can multiply m × p matrix A and p × n matrix B to get C = AB:

Cij =

p∑︁
k=1

AikBkj = Ai1B1j + · · · + AipBpj

for i = 1, . . . ,m, j = 1, . . . , n

I to get Cij: move along ith row of A, jth column of B

I example: [
−1.5 3 2

1 −1 0

] 
−1 −1

0 −2
1 0

 =
[

3.5 −4.5
−1 1

]
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Special cases of matrix multiplication

I scalar-vector product (with scalar on right!) x𝛼

I inner product aTb

I matrix-vector multiplication Ax

I outer product of m-vector a and n-vector b

abT =


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
...

amb1 amb2 · · · ambn
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Properties

I (AB)C = A(BC), so both can be written ABC

I A(B + C) = AB + AC

I (AB)T = BTAT

I AI = A and IA = A

I AB = BA does not hold in general
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Block matrices

block matrices can be multiplied using the same formula, e.g.,[
A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]
(provided the products all make sense)
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Column interpretation

I denote columns of B by bi:

B =
[

b1 b2 · · · bn
]

I then we have

AB = A
[

b1 b2 · · · bn
]

=
[

Ab1 Ab2 · · · Abn
]

I so AB is ‘batch’ multiply of A times columns of B
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Multiple sets of linear equations

I given k systems of linear equations, with same m × n coefficient matrix

Axi = bi, i = 1, . . . , k

I write in compact matrix form as AX = B
I X = [x1 · · · xk], B = [b1 · · · bk]
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Inner product interpretation

I with aT
i the rows of A, bj the columns of B, we have

AB =


aT

1 b1 aT
1 b2 · · · aT

1 bn
aT

2 b1 aT
2 b2 · · · aT

2 bn
...

...
...

aT
mb1 aT

mb2 · · · aT
mbn


I so matrix product is all inner products of rows of A and columns of B,

arranged in a matrix
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Gram matrix

I let A be an m × n matrix with columns a1, . . . , an

I the Gram matrix of A is

G = ATA =


aT

1 a1 aT
1 a2 · · · aT

1 an
aT

2 a1 aT
2 a2 · · · aT

2 an
...

...
. . .

...

aT
n a1 aT

n a2 · · · aT
n an


I Gram matrix gives all inner products of columns of A

I example: G = ATA = I means columns of A are orthonormal
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Complexity

I to compute Cij = (AB)ij is inner product of p-vectors

I so total required flops is (mn) (2p) = 2mnp flops

I multiplying two 1000 × 1000 matrices requires 2 billion flops

I . . . and can be done in well under a second on current computers
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Composition of linear functions

I A is an m × p matrix, B is p × n

I define f : Rp → Rm and g : Rn → Rp as

f (u) = Au, g(v) = Bv

I f and g are linear functions

I composition of f and g is h : Rn → Rm with h(x) = f (g(x))

I we have
h(x) = f (g(x)) = A(Bx) = (AB)x

I composition of linear functions is linear

I associated matrix is product of matrices of the functions
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Second difference matrix

I Dn is (n − 1) × n difference matrix:

Dnx = (x2 − x1, . . . , xn − xn−1)

I Dn−1 is (n − 2) × (n − 1) difference matrix:

Dn−1y = (y2 − y1, . . . , yn−1 − yn−2)

I Δ = Dn−1Dn is (n − 2) × n second difference matrix:

Δx = (x1 − 2x2 + x3, x2 − 2x3 + x4, . . . , xn−2 − 2xn−1 + xn)

I for n = 5, Δ = Dn−1Dn is


1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 =

−1 1 0 0

0 −1 1 0
0 0 −1 1



−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
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Matrix powers

I for A square, A2 means AA, and same for higher powers

I with convention A0 = I we have AkAl = Ak+l

I negative powers later; fractional powers in other courses
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Directed graph

I n × n matrix A is adjacency matrix of directed graph:

Aij =

{
1 there is a edge from vertex j to vertex i
0 otherwise

I example:

1

2 3

4

5
A =


0 1 0 0 1
1 0 1 0 0
0 0 1 1 1
1 0 0 0 0
0 0 0 1 0
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Paths in directed graph

I square of adjacency matrix:

(A2)ij =
n∑︁

k=1
AikAkj

I (A2)ij is number of paths of length 2 from j to i
I for the example,

A2 =


1 0 1 1 0
0 1 1 1 2
1 0 1 2 1
0 1 0 0 1
1 0 0 0 0


e.g., there are two paths from 4 to 3 (via 3 and 5)

I more generally, (Aℓ)ij = number of paths of length ℓ from j to i
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Gram–Schmidt in matrix notation

I run Gram–Schmidt on columns a1, . . . , ak of n × k matrix A

I if columns are linearly independent, get orthonormal q1, . . . , qk

I define n × k matrix Q with columns q1, . . . , qk

I QTQ = I

I from Gram–Schmidt algorithm

ai = (qT
1 ai)q1 + · · · + (qT

i−1ai)qi−1 + ‖q̃i‖qi

= R1iq1 + · · · + Riiqi

with Rij = qT
i aj for i < j and Rii = ‖q̃i‖

I defining Rij = 0 for i > j we have A = QR

I R is upper triangular, with positive diagonal entries
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QR factorization

I A = QR is called QR factorization of A

I factors satisfy QTQ = I, R upper triangular with positive diagonal entries

I can be computed using Gram–Schmidt algorithm (or some variations)

I has a huge number of uses, which we’ll see soon
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Householder transforms for QR factorization

I matrix multiplication to compute QR factorization

I Householder transform: for unit vector u, Hu = I − 2uuT

u

x

{tu | t ∈ R}

uT x

uuTx

Hux

−uuT x

{v ∈ R2 | vTu = 0}
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Properties of Householder transforms

I symmetric and orthogonal:

HT
u = (I − 2uuT )T = I − 2(uuT )T = I − 2uuT

and
HT

u Hu = H2
u = I − 4uuTuuT + 4uuTuuT = I

I product of any number is orthogonal: for unit norm vectors u1, u2, . . . , uk

Q = Hu1Hu2 · · ·Huk

satisfies

QTQ = Huk Huk−1 · · ·Hu2Hu1Hu1Hu2 · · ·Huk

= Huk Huk−1 · · ·Hu2Hu2 · · ·Huk−1Huk = · · · = I.
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Annihilation with Householders

I for unit-norm n-vector x ∈ Rn, find u so that

Hux = e1

e1

xx − e1

I take u = (x − e1)/‖x − e1‖, verify Hux = e1
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Annihilating below diagonals

I start with n × k matrix A with columns a1, a2, . . . , ak

I annihilate below diagonal for first column: if a1 ≠ 0, set v = a1/‖a1‖

Hu = I − 2uuT for u =
v − e1
‖v − e1‖

I then
HuA =

[
Hua1 Hua2 · · · Huak

]
=

[
‖a1‖ ∗

0 Ã1

]
I recurse: for block matrix with Ri an i × i upper triangular matrix[

Ri ∗
0 Ãi−1

]
then for Ãi−1 = [ã1 · · · ãk−i], choosing unit ũ as above for ã1:[

I 0
0 Hũ

] [
Ri ∗
0 Ãi−1

]
=


Ri ∗

0
(
‖ã1‖ ∗

0 Ãi

)
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Householder algorithm for QR factorization

given n × k matrix A with columns a1, . . . , ak
initialize Ã0 = A
for i = 0, . . . ,min{k, n − 2}

1. find first column ã ∈ Rn−i of Ãi
2. test for linear dependence: if ã = 0, recurse on Ãi+1

(the lower right (n − i − 1) × (n − i − 1) block of Ãi)
3. normalize: v = ã/‖ã‖
4. find projector: u = (v − e1)/‖v − e1‖ ∈ Rn−i

5. construct (n − i) × (n − i) Householder matrix Hi = I − 2uuT

6. apply Hi to obtain [
rii ∗
0 Ãi

]
= HiÃi−1

I final output: A = QR, where for m = min{n − 2, k}

Q = H0

[
1 0
0 H1

] [
I2 0
0 H2

]
· · ·

[
Im 0
0 Hm

]
and R = QTA
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