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State sequence

I sequence of n-vectors x1, x2, . . .

I t denotes time or period

I xt is called state at time t; sequence is called state trajectory

I assuming t is current time,
– xt is current state
– xt−1 is previous state
– xt+1 is next state

I examples: xt represents
– age distribution in a population
– economic output in n sectors
– mechanical variables
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Linear dynamics

I linear dynamical system:

xt+1 = Atxt, t = 1, 2, . . .

I At are n × n dynamics matrices

I (At)ij (xt)j is contribution to (xt+1)i from (xt)j
I system is called time-invariant if At = A doesn’t depend on time

I can simulate evolution of xt using recursion xt+1 = Atxt
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Variations

I linear dynamical system with input

xt+1 = Atxt + Btut + ct, t = 1, 2, . . .

– ut is an input m-vector
– Bt is n × m input matrix
– ct is offset

I K-Markov model:

xt+1 = A1xt + · · · + AKxt−K+1, t = K,K + 1, . . .

– next state depends on current state and K − 1 previous states
– also known as auto-regressive model
– for K = 1, this is the standard linear dynamical system xt+1 = Axt
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Population distribution

I xt ∈ R100 gives population distribution in year t = 1, . . . , T

I (xt)i is the number of people with age i − 1 in year t (say, on January 1)

I total population in year t is 1Txt

I number of people age 70 or older in year t is (070, 130)Txt
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Population distribution of the U.S.

(from 2010 census)
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Birth and death rates

I birth rate b ∈ R100, death (or mortality) rate d ∈ R100

I bi is the number of births per person with age i − 1

I di is the portion of those aged i − 1 who will die this year
(we’ll take d100 = 1)

I b and d can vary with time, but we’ll assume they are constant
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Birth and death rates in the U.S.
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Dynamics

I let’s find next year’s population distribution xt+1 (ignoring immigration)

I number of 0-year-olds next year is total births this year:

(xt+1)1 = bTxt

I number of i-year-olds next year is number of (i − 1)-year-olds this year,
minus those who die:

(xt+1)i+1 = (1 − di) (xt)i, i = 1, . . . , 99

I xt+1 = Axt, where

A =



b1 b2 · · · b99 b100
1 − d1 0 · · · 0 0

0 1 − d2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 − d99 0


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Predicting future population distributions

predicting U.S. 2020 distribution from 2010 (ignoring immigration)
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SIR model

I 4-vector xt gives proportion of population in 4 infection states

Susceptible: can acquire the disease the next day
Infected: have the disease
Recovered: had the disease, recovered, now immune
Deceased: had the disease, and unfortunately died

I sometimes called SIR model

I e.g., xt = (0.75, 0.10, 0.10, 0.05)
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Epidemic dynamics

over each day,
I among susceptible population,

– 5% acquires the disease
– 95% remain susceptible

I among infected population,
– 1% dies
– 10% recovers with immunity
– 4% recover without immunity (i.e., become susceptible)
– 85% remain infected

I 100% of immune and dead people remain in their state
I epidemic dynamics as linear dynamical system

xt+1 =


0.95 0.04 0 0
0.05 0.85 0 0

0 0.10 1 0
0 0.01 0 1

 xt
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Simulation from x1 = (1, 0, 0, 0)
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