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Superposition

I f : Rn → Rm means f is a function that maps n-vectors to m-vectors

I we write f (x) = (f1 (x), . . . , fm (x)) to emphasize components of f (x)

I we write f (x) = f (x1, . . . , xn) to emphasize components of x

I f satisfies superposition if for all x, y, 𝛼, 𝛽

f (𝛼x + 𝛽y) = 𝛼f (x) + 𝛽f (y)

(this innocent looking equation says a lot . . . )

I such an f is called linear
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Matrix-vector product function

I with A an m × n matrix, define f as f (x) = Ax

I f is linear:

f (𝛼x + 𝛽y) = A(𝛼x + 𝛽y)
= A(𝛼x) + A(𝛽y)
= 𝛼(Ax) + 𝛽(Ay)
= 𝛼f (x) + 𝛽f (y)

I converse is true: if f : Rn → Rm is linear, then

f (x) = f (x1e1 + x2e2 + · · · + xnen)
= x1f (e1) + x2f (e2) + · · · + xnf (en)
= Ax

with A =
[

f (e1) f (e2) · · · f (en)
]
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Examples

I reversal: f (x) = (xn, xn−1, . . . , x1)

A =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


I running sum: f (x) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · · + xn)

A =



1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1
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Affine functions

I function f : Rn → Rm is affine if it is a linear function plus a constant, i.e.,

f (x) = Ax + b

I same as:
f (𝛼x + 𝛽y) = 𝛼f (x) + 𝛽f (y)

holds for all x, y, and 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

I can recover A and b from f using

A =
[

f (e1) − f (0) f (e2) − f (0) · · · f (en) − f (0)
]

b = f (0)

I affine functions sometimes (incorrectly) called linear
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Linear and affine functions models

I in many applications, relations between n-vectors and m-vectors are
approximated as linear or affine

I sometimes the approximation is excellent, and holds over large ranges of
the variables (e.g., electromagnetics)

I sometimes the approximation is reasonably good over smaller ranges
(e.g., aircraft dynamics)

I in other cases it is quite approximate, but still useful (e.g., econometric
models)
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Price elasticity of demand

I n goods or services

I prices given by n-vector p, demand given as n-vector d

I 𝛿
price
i = (pnew

i − pi)/pi is fractional changes in prices

I 𝛿dem
i = (dnew

i − di)/di is fractional change in demands

I price-demand elasticity model: 𝛿dem = E𝛿price

I what do the following mean?

E11 = −0.3, E12 = +0.1, E23 = −0.05
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Taylor series approximation

I suppose f : Rn → Rm is differentiable
I first order Taylor approximation f̂ of f near z:

f̂i (x) = fi (z) +
𝜕fi
𝜕x1

(z) (x1 − z1) + · · · + 𝜕fi
𝜕xn

(z) (xn − zn)

= fi (z) + ∇fi (z)T (x − z)

I in compact notation: f̂ (x) = f (z) + Df (z) (x − z)
I Df (z) is the m × n derivative or Jacobian matrix of f at z

Df (z)ij =
𝜕fi
𝜕xj

(z), i = 1, . . . ,m, j = 1, . . . , n

I f̂ (x) is a very good approximation of f (x) for x near z
I f̂ (x) is an affine function of x
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Regression model

I regression model: ŷ = xT 𝛽 + v
– x is n-vector of features or regressors
– 𝛽 is n-vector of model parameters; v is offset parameter
– (scalar) ŷ is our prediction of y

I now suppose we have N examples or samples x(1) , . . . , x(N) , and
associated responses y(1) , . . . , y(N)

I associated predictions are ŷ(i) = (x(i) )T 𝛽 + v

I write as ŷd = XT 𝛽 + v1
– X is feature matrix with columns x(1) , . . . , x(N)

– yd is N-vector of responses (y(1) , . . . , y(N) )
– ŷd is N-vector of predictions (ŷ(1) , . . . , ŷ(N) )

I prediction error (vector) is yd − ŷd = yd − XT 𝛽 − v1
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Systems of linear equations

I set (or system) of m linear equations in n variables x1, . . . , xn:

A11x1 + A12x2 + · · · + A1nxn = b1

A21x1 + A22x2 + · · · + A2nxn = b2
...

Am1x1 + Am2x2 + · · · + Amnxn = bm

I n-vector x is called the variable or unknowns

I Aij are the coefficients; A is the coefficient matrix

I b is called the right-hand side

I can express very compactly as Ax = b
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Systems of linear equations

I systems of linear equations classified as
– under-determined if m < n (A wide)
– square if m = n (A square)
– over-determined if m > n (A tall)

I x is called a solution if Ax = b

I depending on A and b, there can be
– no solution
– one solution
– many solutions

I we’ll see how to solve linear equations later
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Chemical equations

I a chemical reaction involves p reactants, q products (molecules)

I expressed as

a1R1 + · · · + apRp −→ b1P1 + · · · + bqPq

I R1, . . . ,Rp are reactants

I P1, . . . ,Pq are products

I a1, . . . , ap, b1, . . . , bq are positive coefficients

I coefficients usually integers, but can be scaled
– e.g., multiplying all coefficients by 1/2 doesn’t change the reaction

Introduction to Applied Linear Algebra Boyd & Vandenberghe 8.15



Example: electrolysis of water

2H2O −→ 2H2 + O2

I one reactant: water (H2O)

I two products: hydrogen (H2) and oxygen (O2)

I reaction consumes 2 water molecules and produces 2 hydrogen molecules
and 1 oxygen molecule
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Balancing equations

I each molecule (reactant/product) contains specific numbers of (types of)
atoms, given in its formula

– e.g., H2O contains two H and one O

I conservation of mass: total number of each type of atom in a chemical
equation must balance

I for each atom, total number on LHS must equal total on RHS

I e.g., electrolysis reaction is balanced:
– 4 units of H on LHS and RHS
– 2 units of O on LHS and RHS

I finding (nonzero) coefficients to achieve balance is called balancing
equations

Introduction to Applied Linear Algebra Boyd & Vandenberghe 8.17



Reactant and product matrices

I consider reaction with m types of atoms, p reactants, q products

I m × p reactant matrix R is defined by

Rij = number of atoms of type i in reactant Rj,

for i = 1, . . . ,m and j = 1, . . . , p

I with a = (a1, . . . , ap) (vector of reactant coefficients)

Ra = (vector of) total numbers of atoms of each type in reactants

I define product m × q matrix P in similar way

I m-vector Pb is total numbers of atoms of each type in products

I conservation of mass is Ra = Pb
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Balancing equations via linear equations

I conservation of mass is [
R −P

] [ a
b

]
= 0

I simple solution is a = 0, b = 0

I to find a nonzero solution, set any coefficient (say, a1) to be 1

I balancing chemical equations can be expressed as solving a set of m + 1
linear equations in p + q variables[

R −P
eT

1 0

] [
a
b

]
= em+1

(we ignore here that ai and bi should be nonnegative integers)
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Conservation of charge

I can extend to include charge, e.g., Cr2O2−
7 has charge −2

I conservation of charge: total charge on each side of reaction must balance

I we can simply treat charge as another type of atom to balance
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Example

a1Cr2O2−
7 + a2Fe2+ + a3H+ −→ b1Cr3+ + b2Fe3+ + b3H2O

I 5 atoms/charge: Cr, O, Fe, H, charge
I reactant and product matrix:

R =


2 0 0
7 0 0
0 1 0
0 0 1

−2 2 1


, P =


1 0 0
0 0 1
0 1 0
0 0 2
3 3 0


I balancing equations (including a1 = 1 constraint)

2 0 0 −1 0 0
7 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 0 −2

−2 2 1 −3 −3 0
1 0 0 0 0 0





a1
a2
a3
b1
b2
b3


=



0
0
0
0
0
1
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Balancing equations example

I solving the system yields 

a1
a2
a3
b1
b2
b3


=



1
6
14
2
6
7


I the balanced equation is

Cr2O2−
7 + 6Fe2+ + 14H+ −→ 2Cr3+ + 6Fe3+ + 7H2O
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