Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Developed by Stephen Boyd Lieven Vandenberghe Modified by John Duchi

3. Norm and distance

Outline

[Norm](#page-2-0)

[Distance](#page-8-0)

[Standard deviation](#page-13-0)

[Angle](#page-18-0)

Introduction to Applied Linear Algebra Boyd & Vandenberghe 3.1

Norm

 \blacktriangleright the *Euclidean norm* (or just *norm*) of an *n*-vector *x* is

$$
||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}
$$

- \blacktriangleright used to measure the size of a vector
- \blacktriangleright reduces to absolute value for $n = 1$

Properties

for any *n*-vectors x and y, and any scalar β

- $▶$ *homogeneity:* $||\beta x|| = |\beta| ||x||$
- ▶ *triangle inequality:* $||x + y|| \le ||x|| + ||y||$
- ▶ *nonnegativity:* [∥]*x*∥ ≥ ⁰
- ▶ *definiteness:* $||x|| = 0$ only if $x = 0$

easy to show except triangle inequality, which we show later

RMS value

 \blacktriangleright *mean-square value* of *n*-vector *x* is

$$
\frac{x_1^2 + \dots + x_n^2}{n} = \frac{||x||^2}{n}
$$

▶ *root-mean-square value* (RMS value) is

$$
rms(x) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{||x||}{\sqrt{n}}
$$

$$
\triangleright \mathbf{rms}(x) \text{ gives 'typical' value of } |x_i|
$$

- \blacktriangleright *e.g.*, **rms**(1) = 1 (independent of *n*)
- ▶ RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

 \blacktriangleright suppose a, b, c are vectors

$$
\blacktriangleright ||(a,b,c)||^2 = a^T a + b^T b + c^T c = ||a||^2 + ||b||^2 + ||c||^2
$$

 \blacktriangleright so we have

$$
||(a, b, c)|| = \sqrt{||a||^2 + ||b||^2 + ||c||^2} = ||(||a||, ||b||, ||c||)||
$$

(parse RHS very carefully!)

▶ we'll use these ideas later

Chebyshev inequality

- ▶ suppose that *k* of the numbers $|x_1|, \ldots, |x_n|$ are $\ge a$
- ▶ then *k* of the numbers $x_1^2, ..., x_n^2$ are $\geq a^2$
- ▶ so $||x||^2 = x_1^2 + \cdots + x_n^2 \ge ka^2$
- ▶ so we have $k \leq ||x||^2/a^2$
- ▶ number of x_i with $|x_i| \ge a$ is no more than $||x||^2/a^2$
- ▶ this is the *Chebyshev inequality*
- \triangleright in terms of RMS value:

fraction of entries with $|x_i| \ge a$ is no more than $\left(\frac{\textbf{rms}(x)}{a}\right)$ *a* χ^2

▶ example: no more than 4% of entries can satisfy $|x_i|$ ≥ 5 $\mathbf{rms}(x)$

Outline

[Norm](#page-2-0)

[Distance](#page-8-0)

[Standard deviation](#page-13-0)

[Angle](#page-18-0)

Distance

▶ (Euclidean) *distance* between *n*-vectors *a* and *b* is

dist(*a*, *b*) = $||a - b||$

 \blacktriangleright agrees with ordinary distance for $n = 1, 2, 3$

▶ **rms**(*^a* [−] *^b*) is the *RMS deviation* between *^a* and *^b*

Triangle inequality

- \blacktriangleright triangle with vertices at positions a, b, c
- ▶ edge lengths are $||a b||$, $||b c||$, $||a c||$
- \blacktriangleright by triangle inequality

$$
||a - c|| = ||(a - b) + (b - c)|| \le ||a - b|| + ||b - c||
$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- ▶ if *^x* and *^y* are feature vectors for two entities, [∥]*^x* [−] *^y*[∥] is the *feature distance*
- \blacktriangleright if z_1, \ldots, z_m is a list of vectors, z_j is the *nearest neighbor* of *x* if

$$
\begin{array}{c|cc}\n & z_4 \\
 & x & z_6 \\
\hline\n & z_5 & \\
 & & z_3 & \\
 & & & z_2 & \\
\hline\n & z_1 & z_2 & \\
\end{array}
$$

$$
||x - z_j|| \le ||x - z_i||, \quad i = 1, ..., m
$$

 \blacktriangleright these simple ideas are very widely used

Introduction to Applied Linear Algebra **Boyd & Vandenberghe** 3.10

Document dissimilarity

- ▶ 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- \triangleright word count histograms, dictionary of 4423 words
- ▶ pairwise distances shown below

Outline

[Norm](#page-2-0)

[Distance](#page-8-0)

[Standard deviation](#page-13-0)

[Angle](#page-18-0)

Standard deviation

- ▶ for *n*-vector *x*, $\mathbf{avg}(x) = \mathbf{1}^T x/n$
- \triangleright *de-meaned vector* is $\tilde{x} = x \mathbf{avg}(x)\mathbf{1}$ (so $\mathbf{avg}(\tilde{x}) = 0$)
- ▶ *standard deviation* of *x* is

$$
std(x) = rms(\tilde{x}) = \frac{||x - (1^T x/n)1||}{\sqrt{n}}
$$

- \blacktriangleright **std**(*x*) gives 'typical' amount *x_i* vary from $\arg(x)$
- \blacktriangleright **std**(*x*) = 0 only if $x = \alpha \mathbf{1}$ for some α
- ▶ greek letters μ , σ commonly used for mean, standard deviation
- \blacktriangleright a basic formula:

$$
rms(x)^2 = avg(x)^2 + std(x)^2
$$

Mean return and risk

- ▶ *x* is time series of returns (say, in %) on some investment or asset over some period
- \triangleright **avg** (x) is the mean return over the period, usually just called *return*
- \triangleright std(x) measures how variable the return is over the period, and is called the *risk*
- ▶ multiple investments (with different return time series) are often compared in terms of return and risk
- ▶ often plotted on a *risk-return plot*

Risk-return example

Chebyshev inequality for standard deviation

- \triangleright *x* is an *n*-vector with mean $\arg(x)$, standard deviation std(*x*)
- \triangleright rough idea: most entries of x are not too far from the mean
- \blacktriangleright by Chebyshev inequality, fraction of entries of x with

 $|x_i - \mathbf{avg}(x)| > \alpha \ \mathbf{std}(x)$

is no more than $1/\alpha^2$ (for $\alpha > 1$)

 \triangleright for return time series with mean 8% and standard deviation 3%, loss $(x_i \le 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods

Outline

[Norm](#page-2-0)

[Distance](#page-8-0)

[Standard deviation](#page-13-0)

[Angle](#page-18-0)

Cauchy–Schwarz inequality

- ▶ for two *n*-vectors *a* and *b*, $|a^Tb|$ ≤ $||a|| ||b||$
- \blacktriangleright written out,

$$
|a_1b_1 + \cdots + a_nb_n| \leq (a_1^2 + \cdots + a_n^2)^{1/2} (b_1^2 + \cdots + b_n^2)^{1/2}
$$

 \blacktriangleright now we can show triangle inequality:

$$
||a + b||2 = ||a||2 + 2aTb + ||b||2
$$

\n
$$
\le ||a||2 + 2||a|| ||b|| + ||b||2
$$

\n
$$
= (||a|| + ||b||)2
$$

Derivation of Cauchy–Schwarz inequality

- \blacktriangleright it's clearly true if either *a* or *b* is 0
- **►** so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero

 \blacktriangleright we have

$$
0 \leq ||\beta a - \alpha b||^2
$$

= $||\beta a||^2 - 2(\beta a)^T(\alpha b) + ||\alpha b||^2$
= $\beta^2 ||a||^2 - 2\beta\alpha(a^T b) + \alpha^2 ||b||^2$
= $2||a||^2 ||b||^2 - 2||a|| ||b||(a^T b)$

- ▶ divide by 2 $||a|| ||b||$ to get $a^T b \le ||a|| ||b||$
- ▶ apply to [−]*a*, *^b* to get other half of Cauchy–Schwarz inequality

Angle

▶ *angle* between two nonzero vectors *a*, *b* defined as

$$
\angle(a, b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)
$$

 \triangleright ∠(*a*, *b*) is the number in [0, π] that satisfies

$$
a^T b = ||a|| ||b|| \cos(\angle(a, b))
$$

▶ coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

 $\theta = \angle(a, b)$

- \blacktriangleright $\theta = \pi/2 = 90^\circ$: *a* and *b* are *orthogonal*, written *a* ⊥ *b* (*a*^T*b* = 0)
- ▶ $\theta = 0$: *a* and *b* are *aligned* $(a^T b = ||a|| ||b||)$
- \blacktriangleright $\theta = \pi = 180^\circ$: *a* and *b* are *anti-aligned* (*a*^T*b* = −||*a*|| ||*b*||)
- ▶ $\theta \le \pi/2 = 90^\circ$: *a* and *b* make an *acute angle* $(a^T b \ge 0)$
- ▶ $θ ≥ π/2 = 90°$: *a* and *b* make an *obtuse angle* $(a^Tb ≤ 0)$

Spherical distance

if *^a*, *^b* are on sphere of radius *^R*, distance *along the sphere* is *^R*∠(*a*, *^b*)

Document dissimilarity by angles

- ▶ measure dissimilarity by angle of word count histogram vectors
- ▶ pairwise angles (in degrees) for 5 Wikipedia pages shown below

Correlation coefficient

 \triangleright vectors a and b , and de-meaned vectors

$$
\tilde{a} = a - \arg(a)\mathbf{1}, \qquad \tilde{b} = b - \arg(b)\mathbf{1}
$$

▶ *correlation coefficient* (between *a* and *b*, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$
\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}
$$

 \triangleright $\rho = \cos \angle (\tilde{a}, \tilde{b})$

- $-\rho = 0$: *a* and *b* are *uncorrelated*
- ρ > 0.8 (or so): *a* and *b* are *highly correlated*
- < −0.8 (or so): *a* and *b* are *highly anti-correlated*
- \triangleright very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Examples

Examples

- \blacktriangleright highly correlated vectors:
	- rainfall time series at nearby locations
	- daily returns of similar companies in same industry
	- word count vectors of closely related documents (*e.g.*, same author, topic, . . .)
	- sales of shoes and socks (at different locations or periods)
- ▶ approximately uncorrelated vectors
	- unrelated vectors
	- audio signals (even different tracks in multi-track recording)
- \triangleright (somewhat) negatively correlated vectors
	- daily temperatures in Palo Alto and Melbourne

Example: chocolate consumption

F. Messerli 2012, NEJM

Physicists and F1 rankings

As the number of physicists in California rose, so did the development of advanced car technology. These physicists were really driving innovation in the automotive industry, leading to faster and more efficient race cars. It seems they were the ones who truly understood the physics of speed, propelling Michael Schumacher to higher rankings. It was a case of Golden State of Mind meets Pole Position!

Introduction to Applied Linear Algebra **Boyd & Vandenberghe** 3.28