
EE 367 / CS 448I Computational Imaging 2022
Notes: Image Deconvolution with the Half-quadratic Splitting Method

Lecture 10

Gordon Wetzstein
gordon.wetzstein@stanford.edu

This document serves as a supplement to the material discussed in the lectures. The document is not meant to
be a comprehensive review of image deconvolution or iterative optimization, but rather an intuitive introduction to
the basic mathematical concepts of non-blind image deconvolution and efficient implementation strategies with the
half-quadratic splitting (HQS) method.

To keep this document to a reasonable length, we will make the assumption that our observations are corrupted
by zero-mean Gaussian i.i.d. noise and use a single prior for regularizing our objective function. Please see the
advanced notes on “Noise, Denoising, and Image Reconstruction with Noise” for extensions on how to deal with
Poisson or mixed Poisson-Gaussian noise and how to include multiple priors.

1 Image Formation

Given a 2D image x and a shift-invariant 2D convolution kernel or point spread function (PSF) c, a 2D image b is
formed as

b = c ∗ x+ η. (1)

Here, b is the measured image, which is usually blurry, i.e., in most imaging applications the PSF is an optical
low-pass filter. The measurements are corrupted by an additive, signal-independent noise term η.

The convolution theorem states that Equation 1 can be similarly written as a multiplication in the Fourier domain:

b = F−1 {F {c} · F {x}}+ η, (2)

where · is the element-wise product. Note that Equations 1 and 2 are numerically only equivalent when the convo-
lution is performed with circular boundary conditions.

Deconvolution is the problem of finding an estimate x̃ of the latent image from blurry, possibly also noisy, measure-
ments b.

For the purpose of this set of notes, we will interchangeably use the above “signal processing notation” with x and
b describing 2D images and an “algebraic notation” that expresses the same concepts using matrices and vectors:

b = c ∗ x ⇔ b = Cx. (3)

We consider these formulations equivalent, where C ∈ RN×N is a square circulant Toeplitz matrix implementing a
shift invariant convolution with convolution kernel c and x,b ∈ RN are the vectorized forms of the corresponding
images x and b, respectively.

2 Inverse Filtering and Wiener Deconvolution

The most straightforward approach of inverting Equation 2 is inverse filtering. For this purpose, a per-image-
frequency division of the optical transfer function (OTF) F {c} is performed as

x̃if = F−1
{
F {b}
F {c}

}
. (4)

(a) Target Image (b) Measurements, σ = 0 (c) Measurements, σ = 0.01 (d) Measurements, σ = 0.1

(e) Inverse Filtering, σ = 0 (f) Inverse Filtering, σ = 0.01 (g) Inverse Filtering, σ = 0.1

(h) Wiener Deconv, σ = 0 (i) Wiener Deconv, σ = 0.01 (j) Wiener Deconv, σ = 0.1

Figure 1: Inverse filtering and Wiener Deconvolution for the birds image; σ is the standard deviation of the zero-
mean i.i.d. Gaussian noise added to the corresponding measurements.

Although inverse filtering is computationally efficient, it is usually problematic when the values of F {c} are small,
i.e., the convolution kernel has zeros in the Fourier domain. Unfortunately, this is the case for most relevant PSFs in
imaging and optics. Divisions by zero or values close to zero will severely amplify measurement noise, as illustrated
in Fig. 1.

The primary problem of inverse filtering is that measurement noise is ignored for the reconstruction. Wiener filtering
applied to the deconvolution problem adds a damping factor to the inverse filter:

x̃wf = F−1
{

|F {c}|2

|F {c}|2 + 1
SNR

· F {b}
F {c}

}
, (5)

where SNR is the signal-to-noise ratio. If no noise is present in the measurements, the SNR is infinitely high. In that
particular case, Wiener filtering is equivalent to inverse filtering. In all other cases, Equation 5 adds a per-frequency
damping factor that requires the signal magnitude and the noise power spectral density for each frequency to be
known. A common approximation to this is to choose the signal term as the mean image intensity and the noise term
as the standard deviation of the (usually zero-mean Gaussian i.i.d.) noise distribution η.

Wiener deconvolution generally achieves reasonable results, as seen in Figure 1. However, perhaps the fundamental
problem with these intuitive filter-based approaches to solving the deconvolution problem is that we have no way to
include prior knowledge of natural image statistics. State-of-the-art data-driven methods, for example, are extremely
powerful, but we simply cannot make use of them with the inverse or Wiener filtering approach. To overcome this
challenge, we will discuss a natural image prior, total variation, in the next section and then we will derive an iterative
optimization approach that allows us to combine this and other (data-driven) natural image priors with the image
formation model of our deconvolution problem.

3 Natural Image Priors

So what is a natural image prior? It is simply a mathematical model that tells us which distribution of pixels is
more likely than another. When solving ill-posed inverse problems, such as deconvolution, there are infinitely many
solutions that could have led to a set of observations. A prior will help us pick one of these feasible solutions, which
not only satisfies the observations but additionally aligns well with our prior.

A note on terminology: as derived in the lecture slides and the course notes on “Noise, Denoising, and Image
Reconstruction with Noise”, the term prior comes from the Bayesian perspective of solving inverse problems. In
this context, the prior models the probability distribution of natural images. In the following, we will use the term
regularizer to promote certain properties of natural images and, technically, the regularizer is the negative logarithm
of the corresponding prior.

Common regularizers include smoothness, sparseness, sparse gradients, self-similarity-promoting regularizers, and
many others. For a vectorized image x, a sparseness regularizer on the image itself could be mathematically ex-
pressed by the `1-norm ‖x‖1 =

∑
|xi| or a smoothness regularizer as ‖∆x‖2, where ∆ is the finite differences

approximation of the Laplace operator, i.e., the second derivative of the image modeling smoothness. In the follow-
ing, we will focus on one of the most popular regularizers in image processing called total variation (TV) [Rudin
et al. 1992].

The intuition behind TV is that most natural images can be well modeled by piecewise constant approximations.
If you look around you or at photographs of natural scenes, you may notice that many parts of these images are
constant over large regions with sharp transitions between different objects. This is exactly what TV attempts to
model: sharp edges between areas of constant intensity.

To model TV, we need to compute the first derivative of our image. We denote the first derivative in the horizontal
direction as Dxx and in the vertical direction as Dyx. Here, Dx/y ∈ RN×N are matrices encoding the finite
differences operator. Again, it is important to keep the duality between the algebraic matrix–vector notation and the
signal processing notation in mind, i.e.

Dxx ⇔ x ∗ dx, dx =

 0 0 0
0 −1 1
0 0 0

 , Dyx ⇔ x ∗ dy, dy =

 0 0 0
0 −1 0
0 1 0

 . (6)

Thus, we can equally compute the finite differences derivatives using a matrix–vector multiplication or using a
convolution with the kernels dx and dy. The resulting image gradients will contain both positive and negative
values. We visualize them for our test image in Figs. 2 (a,b), normalized within a range between -0.3 and 0.3 so that
gray represents a value of 0.

The TV pseudo-norm promotes sparse gradients using an `1-norm of the image gradients. For this purpose, anisotropic
TV simply adds the `1-norms of both gradients terms as

TVanisotropic (x) = ‖Dxx‖1 + ‖Dyx‖1 =
N∑
i=1

|(Dxx)i|+
∣∣(Dyx)i

∣∣ =
N∑
i=1

√
(Dxx)2i +

√
(Dyx)2i . (7)

(a) Horizontal image gradients Dxx (b) Vertical image gradients Dyx (c) Anisotropic TV (d) Isotropic TV

Figure 2: Image gradients (a,b) as well as isotropic and anisotropic variants of TV without summing over the
pixels. Both (c,d) are mostly black, indicating that this image indeed has many zero-valued, i.e., sparse, gradients.
For clarify, we show these gradients and TV for the grayscale version of the “birds” image.

The isotropic variant of TV combines the gradients in a slightly different way as

TVisotropic (x) = ‖Dx‖2,1 =
N∑
i=1

∥∥∥∥[(Dxx)i
(Dyx)i

]∥∥∥∥
2

=
N∑
i=1

√
(Dxx)2i + (Dyx)2i , (8)

where ‖·‖2,1 is known as the `2,1-norm.

Here is intuitive explanation of what these two variants of TV do differently: the anisotropic version simply promotes
sparse horizontal and vertical gradients, but it doesn’t specify that non-zero gradients in both dimensions should
ideally be at the same pixel location. So you could end up with a non-zero horizontal gradient at some pixel and the
corresponding non-zero vertical gradient at the next pixel over. The isotropic variant does not allow this, because it

constraints the magnitude of the two-dimensional image gradient
√

(Dxx)2i + (Dyx)2i to be sparse, rather than its
individual components separately.

We visualize both variants of the TV terms without summing over the pixels in Figs. 2 (c,d). Qualitatively, they
look very similar. Mathematically, it will be slightly easier to work with the anisotropic variant, but the isotropic
variant gives slightly better results in many applications when this is used as a regularization term in an iterative
optimization procedure. We will derive both variants in the following and show how to incorporate TV and also
other regularizers into iterative solvers for the deconvolution problem.

If you are interested in TV-like regularizers, you may enjoy reading about some generalizations of the conventional
TV regularizer discussed here, including hyper-Laplacian priors [Krishnan and Fergus 2009].

4 Regularized Deconvolution with Half-quadratic Splitting

In this section, we introduce an intuitive, yet powerful and flexible iterative optimization approach for solving the
deconvolution problem with priors. To this end, we introduce the half-quadratic splitting (HQS) method, which is a
general strategy for solving regularized inverse problems. Then we show how to use this general framework to solve
the deconvolution problem efficiently using two proximal operators, one for the data fidelity term and another one
for the regularizer. The former operator turns out to be an inverse filtering step and we will show efficient proximal
operators for two regularizers: total variation and Gaussian denoisers, such as DnCNN.

4.1 The Half-quadratic Splitting Method

First, let us introduce HQS [Geman and Yang 1995] in general terms before applying it to the specific problem of
image deconvolution in the next subsection.

Consider a linear image formation model of the form

b = Ax + η, (9)

where x ∈ RN is a vector of unknowns, b ∈ RM is a vector containing the observations, η is additive noise, and
A ∈ RM×N encodes the linear image formation model.

A general formulation for inverse problems in computational imaging is

minimize
{x}

1

2
‖Ax− b‖22︸ ︷︷ ︸

data fidelity term

+ λΨ (x)︸ ︷︷ ︸
regularizer

. (10)

The first term is often referred to as the data fidelity term as it ensures that whatever solution we will find, it should
match our observations b as defined by the image formation model A. Ψ : Rn → R is the regularization operator
modeling prior knowledge of the latent image. The parameter λ defines the relative weight between the data fidelity
and the regularization term.

Solving Equation 10 directly by minimizing it via the gradient descent method or other solvers, such as Adam [Kingma
and Ba 2014], may not work well. The reason is that these direct approaches may not converge well or it may be
challenging to compute the gradients of the objective function in a computationally efficient way. Moreover, chang-
ing the regularizer may require us to re-write our solver from scratch. To address these challenges, we will consider
an alternative form of Equation 10:

minimize
{x}

1

2
‖Ax− b‖22︸ ︷︷ ︸

f(x)

+λΨ (z)︸ ︷︷ ︸
g(z)

(11)

subject to Dx− z = 0

Here, we introduce an additional “slack” variable z ∈ RO. This additional variable allows us to split the two terms
of the objective function, i.e., the data fidelity term and the regularization term, such that they do not depend on the
same variable. Of course, the constraints link these two variables to make sure they match. For now, let’s assume
that the matrix D ∈ RN×O is the identity matrix; so we can ignore it but will get back to it in the next subsection
when we discuss the TV regularizer. Clearly, this formulation is equivalent to the original problem in Eq. 10.

We now remove the constraints of Eq. 10 by including them into the objective as a penalty term:

Lρ (x, z) = f (x) + g (z) +
ρ

2
‖Dx− z‖22 . (12)

Assuming that the weight of the penalty term ρ is large, we can see that minimizing Eq. 12 would equivalently give
us the solution to Eq. 11. Yet, the formulation using the penalty term allows us to apply an alternating gradient
descent update. This is done by using iterative gradient descent updates of Eq. 12 with respect to x and z in an
alternating fashion as

while not converged:

x← proxf,ρ (z) = arg min
{x}

Lρ (x, z) = arg min
{x}

f (x) +
ρ

2
‖Dx− z‖22 , (13)

z← proxg,ρ (Dx) = arg min
{z}

Lρ (x, z) = arg min
{z}

g (z) +
ρ

2
‖Dx− z‖22 . (14)

The x and z-updates are performed with what is known as proximal operators prox·,ρ. The interested reader is
referred to [Boyd et al. 2001] for more details on proximal methods and operators.

The important insight here is that by performing these x and z-updates separately, we only ever have to consider
either f (x) or g (z) in an update but not both simultaneously. As we will see in the following, this approach leads to
a very flexible framework that allows us to easily experiment with different regularizers Ψ when solving an inverse
problem. This is also known as a “plug-and-play” approach [Venkatakrishnan et al. 2013], because we can simply
mix and match image formation models A and regularizers Ψ to solve different inverse problems with different
regularizers without ever having to re-implement any of the proximal operators twice. Finally, we will see that many
proximal operators can be implemented very efficiently, often in closed form; this is another benefit of this approach
along with its flexibility.

While HQS can be applied to solve many different inverse problems, each one using a different matrix A, in the
following we will only consider the special case of image deconvolution with circular boundary conditions. In this
context, the general matrix A is going to be the square circulant Toeplitz matrix C ∈ RN×N implementing a shift
invariant convolution of the 2D input image x with convolution kernel c, as discussed in Section 1. So it is important
to keep the duality between the signal processing notation and the algebra notation in mind, i.e.,

c ∗ x = F−1 {F {c} · F {x}} ⇔ Cx, (15)

F−1 {F {c}∗ · F {x}} ⇔ CTx, (16)

F−1
{
F {b}
F {c}

}
⇔ C−1b, (17)

because we will move back and forth between these notations.

Standard Form of HQS with TV and Denoising Regularizers

Note that the standard form of HQS, i.e., Equation 11, will depend a bit on which regularizer we will be working
with. For the TV regularizer we discussed in the last section, the HQS objective is formulated as

minimize
{x}

1

2
‖Cx− b‖22︸ ︷︷ ︸

f(x)

+λ ‖z‖1︸ ︷︷ ︸
g(z)

(18)

subject to Dx− z = 0,

where D = [DT
x DT

y]T ∈ R2N×N encodes the finite differences operator for calculating the gradient in the x and y
dimensions of the image. Importantly, z ∈ R2N is twice as large as x ∈ RN in this case, because we need to store a
gradient in the x and y directions for each image pixel!

The other, slightly more general case we consider is where we use a general regularizer Ψ that “magically” projects
an image onto the feasible set of natural images. We will later see that any Gaussian denoiser can be used for this
purpose. The HQS objective is

minimize
{x}

1

2
‖Cx− b‖22︸ ︷︷ ︸

f(x)

+λΨ (z)︸ ︷︷ ︸
g(z)

(19)

subject to x− z = 0.

For this case we omit the matrix D or, similarly, assume that it is the identity matrix D = I. Importantly, z ∈ RN
has the same size as x ∈ RN in this case!

We will differentiable between these two special cases when deriving an efficient implementation of the x-update,
i.e., Equation 13, next.

4.2 Efficient Implementation of the x-Update using Inverse Filtering

For the x-update, we need to derive the proximal operator proxf,ρ, which is the following a quadratic program:

proxf,ρ (z) = arg min
{x}

f (x) +
ρ

2
‖Dx− z‖22 = arg min

{x}

1

2
‖Cx− b‖22 +

ρ

2
‖Dx− z‖22 . (20)

To make it easy to follow the derivation step-by-step, we write the objective function out as

1

2
‖Cx− b‖22 +

ρ

2
‖Dx− z‖22 (21)

=
1

2
(Cx− b)T (Cx− b) +

ρ

2
(Dx− z)T (Dx− z) (22)

=
1

2

(
xTCTCx− 2xTCTb + bTb

)
+
ρ

2

(
xTDTDx− 2xTDT z + vT z

)
The gradient of this expression is

CTCx−CTb + ρDTDx− ρDT z, (23)

which, equated to zero, results in the normal equations that allow us to derive an expression for updating x as

(
CTC + ρDTD

)−1 (
CTb + ρDT z

)
. (24)

For the specific case of 2D image deconvolution with circular boundary conditions, the most efficient way of directly
solving this equation in closed form is inverse filtering (Eq. 4) via the convolution theorem. For this purpose, we
need to find expressions that allows us to express all matrix–vector multiplications as Fourier-domain operations.

4.2.1 Special Case of TV Regularizer

As mentioned before, when using the TV regularizer D is the finite differences operator. Importantly, both operations
Cx and Dx =

[
DT
x DT

y

]T
x (and also their adjoint operations CTb and DT z =

[
DT
x DT

y

]
z = DT

x z1 +DT
y z2)

can be expressed as convolutions, i.e., c ∗ x and dx/y ∗ x. Therefore, we can write operators for the matrix–vector
multiplications in Equation 24 as(

CTC + ρDTD
)
⇔ F−1 {F {c}∗ · F {c}+ ρ (F {dx}∗ · F {dx}+ F {dy}∗ · F {dy})} , (25)(

CTb + ρDT z
)
⇔ F−1 {F {c}∗ · F {b}+ ρ (F {dx}∗ · F {z1}+ F {dy}∗ · F {z2})} , (26)

where F {c}∗ is the element-wise complex conjugate of F {c} and · is the element-wise product. This gives rise to
the inverse filtering proximal operator, which applies only Fourier transforms and element-wise multiplications or
divisions to solve Equation 20 in closed form as

prox‖·‖2,ρ (z) = F−1
{
F {c}∗ · F {b}+ ρ (F {dx}∗ · F {z1}+ F {dy}∗ · F {z2})
F {c}∗ · F {c}+ ρ (F {dx}∗ · F {dx}+ F {dy}∗ · F {dy})

}
. (27)

Just like inverse filtering, the x-update itself may be unstable w.r.t. noise and zeros in the OTF, but embedded in
the HQS iterations this will not affect the resulting estimate of x. Note that all parts of Equation 27 that do not
depend on z can be precomputed, i.e., the first part of the nominator and the entire denominator, and do not have to
be re-computed throughout the HQS iterations.

4.2.2 Special Case of Denoising Regularizer

Also as mentioned before, when using a more general regularizer, we assume that D = I can be ignored. Therefore,
we can write the inverse filtering proximal operator as

prox‖·‖2,ρ (z) = F−1
{
F {c}∗ · F {b}+ ρF {z}
F {c}∗ · F {c}+ ρ

}
. (28)

Again, all parts of Equation 28 that do not depend on z can be precomputed, which includes the terms F {c}∗ ·F {b}
and the entire denominator.

4.3 Updating z with the TV Regularizer

Anisotropic TV Norm In the z-update (Eq. 14), the `1-norm is convex but not differentiable. Nevertheless, a
closed-form solution for the proximal operator exists, such that

prox‖·‖1,ρ (v) = Sλ/ρ (v) = arg min
{z}

λ ‖z‖1 +
ρ

2
‖v − z‖22 , (29)

with v = Dx and Sκ (·) being the element-wise soft thresholding operator

Sκ (v) =


v − κ v > κ

0 |v| ≤ κ
v + κ v < −κ

(30)

= (v − κ)+ − (−v − κ)+

that can be implemented very efficiently. This is the proximal operator for the anisotropic TV norm.

Isotropic TV Norm Instead of the `1-norm, the isotropic case uses the sum of the `2-norms of the finite differences
approximation of the horizontal and vertical image gradients as a regularizer. If we choose z ∈ R2×N so that
z = [Dxx Dyx]T , we can use the `2,1-norm to write the isotropic version of the regularizer as

g (z) = λ ‖z‖2,1 = λ
N∑
i=1

∥∥∥∥[(Dxx)i
(Dyx)i

]∥∥∥∥
2

= λ
N∑
i=1

√
(Dxx)2i + (Dyx)2i , (31)

which is also known as the group lasso.

Using the same notation as in previous subsection, the deconvolution problem with an isotropic TV regularizer is
formulated as

minimize
{x}

1

2
‖Cx− b‖22︸ ︷︷ ︸

f(x)

+λ
N∑
i=1

∥∥∥∥[zi
zi+N

]∥∥∥∥
2︸ ︷︷ ︸

g(z)

(32)

subject to Dx− z = 0

where zi is the i-th element of z. For 1 ≤ i ≤ N it is meant to represent the finite differences approximation in
horizontal direction, (Dxx)i, and for N + 1 ≤ i ≤ 2N the finite differences approximation in vertical direction,
(Dxy)i. Notice that if we replace the `2-norm in g(z) with the `1-norm, then we get

∑N
i=1 ‖(zi, zi+N)‖1 which

reduces to ‖z‖1 and we recover the anisotropic case.

Since only the regularization term g(z) changed as compared to the anisotropic case, the x-update rule for HQS
stays the same as above and only the z-update changes to

z← prox‖·‖2,1,ρ (v) = arg min
{z}

λ

N∑
i=1

∥∥∥∥[zi
zi+N

]∥∥∥∥
2

+
ρ

2
‖v − z‖22 , v = Dx (33)

The corresponding proximal operator of g(z), the group lasso, is block soft thresholding.

The z-update rule then becomes [
zi
zi+N

]
← Sλ/ρ

([
vi
vi+N

])
, 1 ≤ i ≤ N (34)

where Sκ (·) is the vector soft-thresholding operator

Sκ (a) =

(
1− κ

‖a‖2

)
+

a (35)

4.4 Updating z with DnCNN or any Gaussian Denoiser as the Regularizer

Let’s closely examine the z-update in Equation 14 once more without considering the matrix D:

arg min
{z}

g (z) +
ρ

2
‖x− z‖22 ,

= arg min
{z}

λΨ (z) +
ρ

2
‖x− z‖22 ,

= arg min
{z}

Ψ (z) +
ρ

2λ
‖x− z‖22 . (36)

Surprisingly, Equation 36 describes a denoising problem! Denoising problems for zero-mean Gaussian noise with
variance σ2 are formulated as

arg min
{x}

Ψ (x) +
1

2σ2
‖v − x‖22 , (37)

where v ∈ RN are the noisy observation of the unknown but noise-free image x. Eqs. 36 and 37 are equivalent
assuming that σ2 = λ/ρ. We prove and derive this in more detail in another set of course notes on “Noise, Denoising,
and Image Reconstruction with Noise”, which you can find on the course website.

The important insight is that we can use any Gaussian denoiserD : RN → RN , including “hand-crafted” algorithms
like non-local means (NLM) or BM3D as well as learned CNN-based denoisers, such as DnCNN, as our proximal
operator implementing the z-update. This is important, because it allows us to solve virtually any inverse problem
in computational imaging using the HQS updates using any (CNN-based) denoiser D applied with or pre-trained for
a noise variance of σ2 – we never have to learn a regularizer that is specific to a particular problem but can always
use the same pre-trained denoiser as

proxD,ρ (x) = D
(
x, σ2 =

λ

ρ

)
. (38)

4.5 Pseudo Code

Algorithms 1 and 2 outline pseudo code for deconvolution with HQS using TV and general denoising regularizers,
respectively.

Algorithm 1 HQS for deconvolution with TV regularizer

1: initialize ρ and λ
2: x = zeros (W,H) ;
3: z = zeros (W,H) ;
4: for k = 1 to max iters do
5: x = prox‖·‖2,ρ (z) = F−1

{
F{c}∗·F{b}+ρ(F{dx}∗·F{z1}+F{dy}∗·F{z2})
F{c}∗·F{c}+ρ(F{dx}∗·F{dx}+F{dy}∗·F{dy})

}
6: z = prox‖·‖1,ρ (Dx) = Sλ/ρ (Dx)
7: end for

Algorithm 2 HQS for deconvolution with denoising regularizer

1: initialize ρ and λ
2: x = zeros (W,H) ;
3: z = zeros (W,H) ;
4: for k = 1 to max iters do
5: x = prox‖·‖2,ρ (z) = F−1

{
F{c}∗·F{b}+ρF{z}
F{c}∗·F{c}+ρ

}
6: z = proxD,ρ (x) = D

(
x, σ2 = λ

ρ

)
7: end for

4.6 Experiments and Results

Figure 3 shows an example scene along with simulated blurry and noisy measurements. When comparing different
approaches to solving the inverse deconvolution problem, we see that HQS combined with a DnCNN regularizer
achieves the best results in this case as measured quantitatively using the peak signal-to-noise ratio (PSNR). The dif-
ference between Adam and HQS with the same TV regularizer are not as small as one may think. This is surprising,
because both of these approaches solve the same objective function but HQS just seems to converge better. Spending
more effort on tuning hyperparameters, such as the learning rate of Adam, may make this gap smaller, however. The
quantitative difference between HQS+TV and HQS+DnCNN are perhaps not as big as one may expect. Qualita-
tively, the TV norm creates sharp edges but also usually results in a “patchy” appearance, which is promoted through
the piecewise constant intensity regularizer and expected. The DnCNN regularizer can reduce noise and patches in
the estimated image and this result looks like the most natural of all of these reconstructions. Yet, there is no magic
in any of these approaches as none can recover the high-frequency details of the target image that are irreversibly
lost by the blur kernel, which acts as a low-pass filter. The only way to “restore” them is to hallucinate them, for
example using a generative adversarial network (GAN).

5 Outlook on Unrolled Optimization with Learned Priors

Typically, the HQS method discussed in the previous sections is implemented by first fixing the hyperparameters λ
and ρ and then running the x, z-updates (Eqs. 13,14) either for a fixed number of iterations or until some conver-
gence criteria is satisfied (e.g., the relative change of the residual between two successive iterations is below some
threshold). This works really well in most cases. Yet, a really clever insight is that these repetitive iterations, when
used with a differentiable prior such as DnCNN, can be ran for a fixed number of iterations and interpreted as a
single neural network with the blurry and noisy measurements as input and the estimated latent image as output.
This approach is known as unrolled optimization with deep priors [Diamond et al. 2017]. Some of the benefits of
such an unrolled approach include:

• The entire iterative optimization pipeline becomes end-to-end differentiable.

• The hyperparameters λ and ρ can be learned end to end and optimized per iteration. This would, for example,

(a) Target Image (b) Measurements, σ = 0.1 (c) Wiener Deconv, PSNR: 19.5 dB, SSIM 0.83

(d) Adam+TV, PSNR 26.1 dB (e) HQS+TV, PSNR: 26.3 dB (f) HQS+DnCNN, PSNR: 26.7 dB

Figure 3: Results. A target image (a) is degraded by blurring it and corrupting the measurements with additive
Gaussian noise with σ = 0.1 (b). Conventional approaches, including Wiener deconvolution fail at estimating a
high-quality reconstruction (c). The Adam solver of the PyTorch package combined with an isotropic TV regularizer
does a much better job at recovering the image (d). The HQS solver with a TV regularizer achieves somewhat
comparable results to Adam (e). However, HQS is flexible in allowing arbitrary denoisers to be used as regularizers,
such as DnCNN. For this example, HQS with DnCNN (f) achieves the best results both qualitative and quantitatively,
as measured by the peak signal-to-noise ratio (PSNR).

allow ρ to gradually increase over time. Writing a training curriculum for these parameters manually is really
tricky, so learning them can be very helpful.

• The denoising prior could be learned or refined end to end as part of the unrolled network. This allows the
denoiser to adapt to the specific matrix A or convolution kernel c. Moreover, if sufficient memory is available
one can also learn independent denoising priors in each iteration, allowing the prior to change throughout the
iteration procedure.

• Finally, one can include skip connections from any iteration to any other iteration, turning a sequential iterative
optimization strategy into recurrent or DenseNet-like structure where earlier iterations can inform later ones
through skip connections.

The unrolled optimization strategy provides a formal link between traditional iterative optimization and modern deep
learning frameworks, allowing for the best of both worlds to be seamlessly merged. You can find more information
on this topic in the paper by Diamond et al. [2017]. This general topic would lend itself well for a possible EE367
course project.

References

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN, J. 2001. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1,
1–122.

DIAMOND, S., SITZMANN, V., HEIDE, F., AND WETZSTEIN, G. 2017. Unrolled optimization with deep priors.
arXiv preprint arXiv:1705.08041.

GEMAN, D., AND YANG, C. 1995. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions
on Image Processing 4, 7, 932–946.

KINGMA, D. P., AND BA, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

KRISHNAN, D., AND FERGUS, R. 2009. Fast image deconvolution using hyper-laplacian priors. Advances in
neural information processing systems 22, 1033–1041.

RUDIN, L., OSHER, S., AND FATEMI, E. 1992. Nonlinear total variation based noise removal algorithms. Physica
D: Nonlinear Phenomena 60, 14, 259 – 268.

VENKATAKRISHNAN, S. V., BOUMAN, C. A., AND WOHLBERG, B. 2013. Plug-and-play priors for model based
reconstruction. In IEEE Global Conference on Signal and Information Processing, 945–948.

	Image Formation
	Inverse Filtering and Wiener Deconvolution
	Natural Image Priors
	Regularized Deconvolution with Half-quadratic Splitting
	The Half-quadratic Splitting Method
	Efficient Implementation of the x-Update using Inverse Filtering
	Special Case of TV Regularizer
	Special Case of Denoising Regularizer

	Updating z with the TV Regularizer
	Updating z with DnCNN or any Gaussian Denoiser as the Regularizer
	Pseudo Code
	Experiments and Results

	Outlook on Unrolled Optimization with Learned Priors

