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Motivation New Technique  'm&r e
Image denoising can be done with convolutional neural networks 16 8 3x3 Conv 3x3 Depthwise Conv
(CNNs) [3] 2 | |
Convolution kernel of size D, xD, xSxT operates on input U of size | ‘ BN Tx1 Gonv
D-xD-xS and outputs V of size DzxD xT. gt | ] R output ! !

RelLU BN
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Viz,y,t)= > > Y K(i—z+6,j—y+6s1t)U(,j,s) - .

i=x—0 j=y—4§ s=l1 . :
Where: V. . I Change architecture to reflect separable convolutions,
« 20=D 12x2 12 : _
© Xy in D.xD retrain on data vs. decompose an already trained model
| m - = : — :
| ‘ Algorithm 1 CP-decomposition convolutional layer
: e Require: Rank: r, conv2D layer to factor: layer
Computational Complexity: Voo o oo . 241 1 PWin, PWout, dWyertical, AWhorizontat = CP(layer.weight, rank = r)
O(DKXDKXSX TXDFXDF) - ﬂ - I - com 2: Create conv2D .Iayers with kernel.sizes as follows:
‘ copy and L1 = conv2D(size(pwijy)), L1.weight = pw;,
’48 48 4850 48' concatenate L2 = conv2D(size(dwve,t,-ca/)), L2.weight = dWyertical
I - B N § omded L3 = conv2D(size(dWhorizontal)), L3.weight = dWhorizontal
Vo5 96 o6 4 § strided conv L4 = conv2D(size(pwout)), L4.weight = pwoyut
I > > transpose 4x4 3: layercp = sequential([L1, L2, L3, L4])
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*Approximate architecture with depthwise separable convolutions [1]:
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(b) Depthwise Convolutional Filters
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Noisy Image, 0=.1 BM3D denoised image UNet denoised image Depthwise separable conv UNet
PSNR = 26.3638 PSNR: 26.5669 PSNR: 25.8227
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(a) Standard Convolution Filters

Computational Complexity: . T
O(Dy*DyxS*XDpxDp+ SXTXDeXDr)  ioxcof Deptiise Separable Comatution -+

*Kernel factorization of pre-trained CNNs with CP-decomposition [2]

CP-decomposed UNet
PSNR: 25.6650

UNet: Operations: 178.487045%10°
' — ‘ — ; — ; Parameters: 811100
BM3D denoised image UNet denoised image  Depthwise separable CP-decomposed Operations: 26.765184x10°

Parameters: 76968
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