Subgradient Methods for Constrained Problems

e projected subgradient method
e projected subgradient for dual

e subgradient method for constrained optimization
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Projected subgradient method

solves constrained optimization problem

minimize  f(x)
subject to z € C,

where f : R" — R, C C R" are convex

projected subgradient method is given by
(k1) _ H(zz;(k> _ ozk;g(k)),

IT is (Euclidean) projection on C, and g*) € 9f(x(*)
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same convergence results:

e for constant step size, converges to neighborhood of optimal
(for f differentiable and A small enough, converges)

e for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x*
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Linear equality constraints

minimize  f(x)
subject to Ax =1b

projection of z onto {x | Ax = b} is

I(z) = z-—A(AA")" (A2 —b)
= (I —AY(AADY 1Az + AT (AAT) 1

projected subgradient update is (using Az(¥) = b)

2D =TIz g

e ®) — oy (I — AT(AAT) "1 A) gk
— k) (kr))

— apllza (g
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Example: Least [1-norm

minimize  ||z||1
subject to Ax =1b

subgradient of objective is g = sign(x)

projected subgradient update is

e F Y = () _ o (I — AT(AAT) 71 A4) sign(z®)
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problem instance with n = 1000, m = 50, step size o = 0.1/k, f* =~ 3.2
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Projected subgradient for dual problem

(convex) primal:

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m

solve dual problem
maximize  g(\)
subjectto A >0

via projected subgradient method:

AR+D) — (A(’“) ~ akh) . hed(—g) (AR
+
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Subgradient of negative dual function

assume fy is strictly convex, and denote, for A > 0,

z*(A) = argmin (fo(z) + Auf1(2) + -+ + A fm(2))

z

so g(A) = fo(z*(A)) + Arfr(z™(A) + -+ + Am S (27(X))
a subgradient of —g at A is given by h; = — f;(z*()\))

projected subgradient method for dual:

z®) = g*(AR), N = ()‘gk) + Oékfz'(fli‘(k)))Jr
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e primal iterates (%) are not feasible, but become feasible in limit
(sometimes can find feasible, suboptimal 7(F) from :1:(’“))

e dual function values g(A\(¥)) converge to f* = fo(z*)

interpretation:
e )\; is price for ‘resource’ f;(x)

e price update Agkﬂ) = (A,Ek) + Oékfi($(k)))
_I_

— increase price \; if resource i is over-utilized (i.e., f;(x) > 0)
— decrease price \; if resource i is under-utilized (i.e., f;(x) < 0)
— but never let prices get negative
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Example

minimize strictly convex quadratic (P > 0) over unit box:

minimize  (1/2)z' Pz — ¢’z
subject to z? <1, i=1,...,n

o L(z,\)=(1/2)xl (P + diag(2)\))z — ¢tz — 11\
o 7*(\) = (P + diag(2)\)) ¢
e projected subgradient for dual:

o® = (Pt diagA®) g, AT = (A 4 an(@f) 1)
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problem instance with n = 50, fixed step size a = 0.1, f* ~ —5.3;
(%) is a nearby feasible point for z(*)
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Subgradient method for constrained optimization

solves constrained optimization problem

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m,

where f; : R” — R are convex

same update z*tD) = 2(F) — ,.¢(®) | but we have

g(k)E{ Ofo(z) filx) <0, i=1,...,m,
Ofi(x)  filx) >0

define fégt = min{ fo(x®) | ) feasible, i =1,...,k}
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Convergence

assumptions:

e there exists an optimal x*; Slater's condition holds

o [lg]2 <Gz — a2 < R

typical result: for o, > 0, o, — 0, >~ o; = 00, we have
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Example: Inequality form LP

LP with n = 20 variables, m = 200 inequalities, f* ~ —3.4;
oy, = 1/k for optimality step, Polyak’s step size for feasibility step
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