
Subgradient Methods for Constrained Problems

• projected subgradient method

• projected subgradient for dual

• subgradient method for constrained optimization
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Projected subgradient method

solves constrained optimization problem

minimize f(x)
subject to x ∈ C,

where f : Rn → R, C ⊆ Rn are convex

projected subgradient method is given by

x(k+1) = Π(x(k) − αkg
(k)),

Π is (Euclidean) projection on C, and g(k) ∈ ∂f(x(k))
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same convergence results:

• for constant step size, converges to neighborhood of optimal
(for f differentiable and h small enough, converges)

• for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x⋆
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Linear equality constraints

minimize f(x)
subject to Ax = b

projection of z onto {x | Ax = b} is

Π(z) = z −AT (AAT )−1(Az − b)

= (I −AT (AAT )−1A)z +AT (AAT )−1b

projected subgradient update is (using Ax(k) = b)

x(k+1) = Π(x(k) − αkg
(k))

= x(k) − αk(I −AT (AAT )−1A)g(k)

= x(k) − αkΠN (A)(g
(k))
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Example: Least l1-norm

minimize ‖x‖1
subject to Ax = b

subgradient of objective is g = sign(x)

projected subgradient update is

x(k+1) = x(k) − αk(I −AT (AAT )−1A) sign(x(k))
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problem instance with n = 1000, m = 50, step size αk = 0.1/k, f⋆ ≈ 3.2
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Projected subgradient for dual problem

(convex) primal:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

solve dual problem
maximize g(λ)
subject to λ � 0

via projected subgradient method:

λ(k+1) =
(

λ(k) − αkh
)

+
, h ∈ ∂(−g)(λ(k))
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Subgradient of negative dual function

assume f0 is strictly convex, and denote, for λ � 0,

x∗(λ) = argmin
z

(f0(z) + λ1f1(z) + · · ·+ λmfm(z))

so g(λ) = f0(x
∗(λ)) + λ1f1(x

∗(λ)) + · · ·+ λmfm(x∗(λ))

a subgradient of −g at λ is given by hi = −fi(x
∗(λ))

projected subgradient method for dual:

x(k) = x∗(λ(k)), λ
(k+1)
i =

(

λ
(k)
i + αkfi(x

(k))
)

+
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• primal iterates x(k) are not feasible, but become feasible in limit
(sometimes can find feasible, suboptimal x̃(k) from x(k))

• dual function values g(λ(k)) converge to f⋆ = f0(x
⋆)

interpretation:

• λi is price for ‘resource’ fi(x)

• price update λ
(k+1)
i =

(

λ
(k)
i + αkfi(x

(k))
)

+

– increase price λi if resource i is over-utilized (i.e., fi(x) > 0)
– decrease price λi if resource i is under-utilized (i.e., fi(x) < 0)
– but never let prices get negative
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Example

minimize strictly convex quadratic (P ≻ 0) over unit box:

minimize (1/2)xTPx− qTx
subject to x2

i ≤ 1, i = 1, . . . , n

• L(x, λ) = (1/2)xT (P + diag(2λ))x− qTx− 1Tλ

• x∗(λ) = (P + diag(2λ))−1q

• projected subgradient for dual:

x(k) = (P + diag(2λ(k)))−1q, λ
(k+1)
i =

(

λ
(k)
i + αk((x

(k)
i )2 − 1)

)

+
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problem instance with n = 50, fixed step size α = 0.1, f⋆ ≈ −5.3;
x̃(k) is a nearby feasible point for x(k)
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Subgradient method for constrained optimization

solves constrained optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi : R
n → R are convex

same update x(k+1) = x(k) − αkg
(k), but we have

g(k) ∈

{

∂f0(x) fi(x) ≤ 0, i = 1, . . . ,m,
∂fj(x) fj(x) > 0

define f
(k)
best = min{f0(x

(i)) | x(i) feasible, i = 1, . . . , k}
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Convergence

assumptions:

• there exists an optimal x⋆; Slater’s condition holds

• ‖g(k)‖2 ≤ G; ‖x(1) − x⋆‖2 ≤ R

typical result: for αk > 0, αk → 0,
∑∞

i=1αi = ∞, we have f
(k)
best → f⋆
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Example: Inequality form LP

LP with n = 20 variables, m = 200 inequalities, f⋆ ≈ −3.4;
αk = 1/k for optimality step, Polyak’s step size for feasibility step

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

k

f
(k

)
b
e
st
−

f
⋆

EE364b, Stanford University 13


