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Observability and state estimation

• state estimation

• discrete-time observability

• observability – controllability duality

• observers for noiseless case

• continuous-time observability

• least-squares observers

• statistical interpretation

• example
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State estimation set up

we consider the discrete-time system

x(t + 1) = Ax(t) + Bu(t) + w(t), y(t) = Cx(t) + Du(t) + v(t)

• w is state disturbance or noise

• v is sensor noise or error

• A, B, C, and D are known

• u and y are observed over time interval [0, t − 1]

• w and v are not known, but can be described statistically or assumed
small
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State estimation problem

state estimation problem: estimate x(s) from

u(0), . . . , u(t − 1), y(0), . . . , y(t − 1)

• s = 0: estimate initial state

• s = t − 1: estimate current state

• s = t: estimate (i.e., predict) next state

an algorithm or system that yields an estimate x̂(s) is called an observer or
state estimator

x̂(s) is denoted x̂(s|t − 1) to show what information estimate is based on
(read, “x̂(s) given t − 1”)
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Noiseless case

let’s look at finding x(0), with no state or measurement noise:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp

then we have





y(0)
...

y(t − 1)



 = Otx(0) + Tt





u(0)
...

u(t − 1)




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where

Ot =









C

CA
...

CAt−1









, Tt =









D 0 · · ·
CB D 0 · · ·
...

CAt−2B CAt−3B · · · CB D









• Ot maps initials state into resulting output over [0, t − 1]

• Tt maps input to output over [0, t − 1]

hence we have

Otx(0) =





y(0)
...

y(t − 1)



− Tt





u(0)
...

u(t − 1)





RHS is known, x(0) is to be determined
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hence:

• can uniquely determine x(0) if and only if N (Ot) = {0}

• N (Ot) gives ambiguity in determining x(0)

• if x(0) ∈ N (Ot) and u = 0, output is zero over interval [0, t − 1]

• input u does not affect ability to determine x(0);
its effect can be subtracted out
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Observability matrix

by C-H theorem, each Ak is linear combination of A0, . . . , An−1

hence for t ≥ n, N (Ot) = N (O) where

O = On =









C

CA
...

CAn−1









is called the observability matrix

if x(0) can be deduced from u and y over [0, t − 1] for any t, then x(0)
can be deduced from u and y over [0, n − 1]

N (O) is called unobservable subspace; describes ambiguity in determining
state from input and output

system is called observable if N (O) = {0}, i.e., Rank(O) = n
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Observability – controllability duality

let (Ã, B̃, C̃, D̃) be dual of system (A, B, C, D), i.e.,

Ã = AT , B̃ = CT , C̃ = BT , D̃ = DT

controllability matrix of dual system is

C̃ = [B̃ ÃB̃ · · · Ãn−1B̃]

= [CT ATCT · · · (AT )n−1CT ]

= OT ,

transpose of observability matrix

similarly we have Õ = CT
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thus, system is observable (controllable) if and only if dual system is
controllable (observable)

in fact,
N (O) = range(OT )⊥ = range(C̃)⊥

i.e., unobservable subspace is orthogonal complement of controllable
subspace of dual
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Observers for noiseless case

suppose Rank(Ot) = n (i.e., system is observable) and let F be any left
inverse of Ot, i.e., FOt = I

then we have the observer

x(0) = F









y(0)
...

y(t − 1)



− Tt





u(0)
...

u(t − 1)









which deduces x(0) (exactly) from u, y over [0, t − 1]

in fact we have

x(τ − t + 1) = F









y(τ − t + 1)
...

y(τ)



− Tt





u(τ − t + 1)
...

u(τ)








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i.e., our observer estimates what state was t − 1 epochs ago, given past
t − 1 inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter,
with inputs u and y, and output x̂
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Invariance of unobservable set

fact: the unobservable subspace N (O) is invariant, i.e., if z ∈ N (O),
then Az ∈ N (O)

proof: suppose z ∈ N (O), i.e., CAkz = 0 for k = 0, . . . , n − 1

evidently CAk(Az) = 0 for k = 0, . . . , n − 2;

CAn−1(Az) = CAnz = −
n−1
∑

i=0

αiCAiz = 0

(by C-H) where

det(sI − A) = sn + αn−1s
n−1 + · · · + α0
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Continuous-time observability

continuous-time system with no sensor or state noise:

ẋ = Ax + Bu, y = Cx + Du

can we deduce state x from u and y?

let’s look at derivatives of y:

y = Cx + Du

ẏ = Cẋ + Du̇ = CAx + CBu + Du̇

ÿ = CA2x + CABu + CBu̇ + Dü

and so on
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hence we have








y

ẏ
...

y(n−1)









= Ox + T









u

u̇
...

u(n−1)









where O is the observability matrix and

T =









D 0 · · ·
CB D 0 · · ·
...

CAn−2B CAn−3B · · · CB D









(same matrices we encountered in discrete-time case!)
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rewrite as

Ox =









y

ẏ
...

y(n−1)









− T









u

u̇
...

u(n−1)









RHS is known; x is to be determined

hence if N (O) = {0} we can deduce x(t) from derivatives of u(t), y(t) up
to order n − 1

in this case we say system is observable

can construct an observer using any left inverse F of O:

x = F

















y

ẏ
...

y(n−1)









− T









u

u̇
...

u(n−1)
















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• reconstructs x(t) (exactly and instantaneously) from

u(t), . . . , u(n−1)(t), y(t), . . . , y(n−1)(t)

• derivative-based state reconstruction is dual of state transfer using
impulsive inputs
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A converse

suppose z ∈ N (O) (the unobservable subspace), and u is any input, with
x, y the corresponding state and output, i.e.,

ẋ = Ax + Bu, y = Cx + Du

then state trajectory x̃ = x + eAtz satisfies

˙̃x = Ax̃ + Bu, y = Cx̃ + Du

i.e., input/output signals u, y consistent with both state trajectories x, x̃

hence if system is unobservable, no signal processing of any kind applied to
u and y can deduce x

unobservable subspace N (O) gives fundamental ambiguity in deducing x

from u, y

Observability and state estimation 5–17



Least-squares observers

discrete-time system, with sensor noise:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

we assume Rank(Ot) = n (hence, system is observable)

least-squares observer uses pseudo-inverse:

x̂(0) = O†
t









y(0)
...

y(t − 1)



− Tt





u(0)
...

u(t − 1)









where O†
t =

(

OT
t Ot

)−1
OT

t
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since O†
tOt = I, we have

x̂ls(0) = x(0) + O†
t





v(0)
...

v(t − 1)





in particular, x̂ls(0) = x(0) if sensor noise is zero
(i.e., observer recovers exact state in noiseless case)
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interpretation: x̂ls(0) minimizes discrepancy between

• output ŷ that would be observed, with input u and initial state x(0)
(and no sensor noise), and

• output y that was observed,

measured as

t−1
∑

τ=0

‖ŷ(τ) − y(τ)‖2

can express least-squares initial state estimate as

x̂ls(0) =

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1 t−1
∑

τ=0

(AT )τCT ỹ(τ)

where ỹ is observed output with portion due to input subtracted:
ỹ = y − h ∗ u where h is impulse response
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Statistical interpretation of least-squares observer

suppose sensor noise is IID N (0, σI)

• called white noise

• each sensor has noise variance σ

then x̂ls(0) is MMSE estimate of x(0) when x(0) is deterministic (or has
‘infinite’ prior variance)

estimation error z = x̂ls(0) − x(0) can be expressed as

z = O†
t





v(0)
...

v(t − 1)





hence z ∼ N
(

0, σO†O†T
)
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i.e., covariance of least-squares initial state estimation error is

σO†O†T = σ

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

we’ll assume σ = 1 to simplify

matrix

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

gives measure of ‘how observable’ the

state is, over [0, t − 1]
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Infinite horizon error covariance

the matrix

P = lim
t→∞

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

always exists, and gives the limiting error covariance in estimating x(0)
from u, y over longer and longer periods:

lim
t→∞

E(x̂ls(0|t − 1) − x(0))(x̂ls(0|t − 1) − x(0))T = P

• if A is stable, P > 0
i.e., can’t estimate initial state perfectly even with infinite number of
measurements u(t), y(t), t = 0, . . . (since memory of x(0) fades . . . )

• if A is not stable, then P can have nonzero nullspace
i.e., initial state estimation error gets arbitrarily small (at least in some
directions) as more and more of signals u and y are observed
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Observability Gramian

suppose system

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is observable and stable

then

t−1
∑

τ=0

(AT )τCTCAτ converges as t → ∞ since Aτ decays geometrically

the matrix Wo =

∞
∑

τ=0

(AT )τCTCAτ is called the observability Gramian

Wo satisfies the matrix equation

Wo − ATWoA = CTC

which is called the observability Lyapunov equation (and can be solved
exactly and efficiently)
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Current state estimation

we have concentrated on estimating x(0) from

u(0), . . . , u(t − 1), y(0), . . . , y(t − 1)

now we look at estimating x(t − 1) from this data

we assume

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

• no state noise

• v is white, i.e., IID N (0, σI)

using

x(t − 1) = At−1x(0) +

t−2
∑

τ=0

At−2−τBu(τ)
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we get current state least-squares estimator:

x̂(t − 1|t − 1) = At−1x̂ls(0|t − 1) +

t−2
∑

τ=0

At−2−τBu(τ)

righthand term (i.e., effect of input on current state) is known

estimation error z = x̂(t − 1|t − 1) − x(t − 1) can be expressed as

z = At−1O†
t





v(0)
...

v(t − 1)





hence z ∼ N
(

0, σAt−1O†O†T (AT )t−1
)

i.e., covariance of least-squares current state estimation error is

σAt−1O†O†T (AT )t−1 = σAt−1

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

(AT )t−1
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this matrix measures ‘how observable’ current state is, from past t inputs
& outputs

• decreases (in matrix sense) as t increases

• hence has limit as t → ∞ (gives limiting error covariance of estimating
current state given all past inputs & outputs)
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Example

• particle in R2 moves with uniform velocity

• (linear, noisy) range measurements from directions −15◦, 0◦, 20◦, 30◦,
once per second

• range noises IID N (0, 1)

• no assumptions about initial position & velocity

range sensors

particle

problem: estimate initial position & velocity from range measurements
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express as linear system

x(t + 1) =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









x(t), y(t) =





kT
1
...

kT
4



x(t) + v(t)

• (x1(t), x2(t)) is position of particle

• (x3(t), x4(t)) is velocity of particle

• v(t) ∼ N (0, I)

• ki is unit vector from sensor i to origin

true initial position & velocities: x(0) = (1 − 3 − 0.04 0.03)
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range measurements (& noiseless versions):
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• estimate based on (y(0), . . . , y(t)) is x̂(0|t)

• actual RMS position error is

√

(x̂1(0|t) − x1(0))2 + (x̂2(0|t) − x2(0))2

(similarly for actual RMS velocity error)

• position error std. deviation is

√

E ((x̂1(0|t) − x1(0))2 + (x̂2(0|t) − x2(0))2)

(similarly for velocity)
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Example ctd: state prediction

predict particle position 10 seconds in future:

x̂(t + 10|t) = At+10x̂ls(0|t)

x(t + 10) = At+10x(0)

plot shows estimates (dashed), and actual value (solid) of position of
particle 10 steps ahead, for 10 ≤ t ≤ 110
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Continuous-time least-squares state estimation

assume ẋ = Ax + Bu, y = Cx + Du + v is observable

least-squares observer is

x̂ls(0) =

(∫ t

0

eAT τCTCeAτ dτ

)−1 ∫ t

0

eAT t̄CT ỹ(t̄) dt̄

where ỹ = y − h ∗ u is observed output minus part due to input

then x̂ls(0) = x(0) if v = 0

x̂ls(0) is limiting MMSE estimate when v(t) ∼ N (0, σI) and
E v(t)v(s)T = 0 unless t − s is very small

(called white noise — a tricky concept)
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