Lecture ⁵Observability and state estimation

- state estimation
- discrete-time observability
- observability controllability duality
- observers for noiseless case
- continuous-time observability
- least-squares observers
- statistical interpretation
- example

State estimation set up

we consider the discrete-time system

$$
x(t+1) = Ax(t) + Bu(t) + w(t), \quad y(t) = Cx(t) + Du(t) + v(t)
$$

- $\bullet \; w$ is state *disturbance* or *noise*
- $\bullet\,\,v$ is sensor *noise* or *error*
- \bullet A, B, C , and D are known
- $\bullet \;\, u$ and y are observed over time interval $[0,t-1]$
- $\bullet \;\, w$ and v are not known, but can be described statistically or assumed small

State estimation problem

state estimation problem: estimate $x(s)$ from

$$
u(0),..., u(t-1), y(0),..., y(t-1)
$$

- $\bullet\;s=0\mathrm{:}}$ estimate initial state
- $\bullet\;s=t-\,$ ¹: estimate current state
- $\bullet\;s=t\colon$ estimate $(i.e.,$ predict) next state

an algorithm or system that yields an estimate $\hat{x}(s)$ is called an *observer* or state estimator

 $\hat{x}(s)$ is denoted $\hat{x}(s|t)$ (read, " $\hat{x}(s)$ given $t-\,$ (-1) to show what information estimate is based on 1")

Noiseless case

let's look at finding $x(0)$, with no state or measurement noise:

$$
x(t+1) = Ax(t) + Bu(t),
$$
 $y(t) = Cx(t) + Du(t)$

with $x(t) \in \mathbf{R}^n$, $u(t) \in \mathbf{R}^m$, $y(t) \in \mathbf{R}^p$

then we have

$$
\begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} = \mathcal{O}_t x(0) + \mathcal{T}_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix}
$$

where

$$
\mathcal{O}_t = \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{t-1} \end{array} \right], \quad \mathcal{T}_t = \left[\begin{array}{cccc} D & 0 & \cdots \\ CB & D & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ CA^{t-2}B & CA^{t-3}B & \cdots & CB & D \end{array} \right]
$$

- \bullet \mathcal{O}_t maps initials state into resulting output over $[0,t-1]$
- $\bullet~~{\cal T}_t$ maps input to output over $[0,t-1]$

hence we have

$$
\mathcal{O}_t x(0) = \left[\begin{array}{c} y(0) \\ \vdots \\ y(t-1) \end{array} \right] - \mathcal{T}_t \left[\begin{array}{c} u(0) \\ \vdots \\ u(t-1) \end{array} \right]
$$

RHS is known, $x(0)$ is to be determined

hence:

- \bullet can uniquely determine $x(0)$ if and only if $\mathcal{N}(\mathcal{O}_t)=\{0\}$
- $\bullet \,\, \mathcal{N}(\mathcal{O}_t)$ gives ambiguity in determining $x(0)$
- if $x(0) \in \mathcal{N}(\mathcal{O}_t)$ and $u = 0$, output is zero over interval $[0, t-1]$
- \bullet input u does not affect ability to determine $x(0)$; its effect can be subtracted out

Observability matrix

by C-H theorem, each A^k is linear combination of A^0,\ldots,A^{n-1} hence for $t \geq n$, $\mathcal{N}(\mathcal{O}_t) = \mathcal{N}(\mathcal{O})$ where

$$
\mathcal{O} = \mathcal{O}_n = \left[\begin{array}{c} C \\ CA \\ \vdots \\ CA^{n-1} \end{array} \right]
$$

is called the *observability matrix*

if $x(0)$ can be deduced from u and y over $[0,t-1]$ for any t , then $x(0)$ can be deduced from u and y over $[0, n-1]$

 $\mathcal{N}(\mathcal{O})$ is called *unobservable subspace*; describes ambiguity in determining
state fram input and output state from input and output

system is called *observable* if $\mathcal{N}(\mathcal{O}) = \{0\}$, *i.e.*, $\textbf{Rank}(\mathcal{O}) = n$

Observability – controllability duality

let $(\tilde{A},\tilde{B},\tilde{C},\tilde{D})$ be dual of system (A, B, C, D) , $\emph{i.e.},$

$$
\tilde{A} = A^T, \quad \tilde{B} = C^T, \quad \tilde{C} = B^T, \quad \tilde{D} = D^T
$$

controllability matrix of dual system is

$$
\begin{aligned}\n\tilde{C} &= \left[\tilde{B} \tilde{A} \tilde{B} \cdots \tilde{A}^{n-1} \tilde{B} \right] \\
&= \left[C^T A^T C^T \cdots (A^T)^{n-1} C^T \right] \\
&= \mathcal{O}^T,\n\end{aligned}
$$

transpose of observability matrix

similarly we have
$$
\tilde{\mathcal{O}} = \mathcal{C}^T
$$

thus, system is observable (controllable) if and only if dual system iscontrollable (observable)

in fact,

$$
\mathcal{N}(\mathcal{O}) = \text{range}(\mathcal{O}^T)^{\perp} = \text{range}(\tilde{\mathcal{C}})^{\perp}
$$

 $\it{i.e.},$ unobservable subspace is orthogonal complement of controllable subspace of dual

Observers for noiseless case

suppose $\textbf{Rank}(\mathcal{O}_t) = n$ $(i.e.,$ system is observable) and let F be any left \sim 100 \pm inverse of \mathcal{O}_t , $\emph{i.e.},$ $F\mathcal{O}_t=I$

then we have the observer

$$
x(0) = F\left(\left[\begin{array}{c}y(0) \\ \vdots \\ y(t-1)\end{array}\right] - \mathcal{T}_t\left[\begin{array}{c}u(0) \\ \vdots \\ u(t-1)\end{array}\right]\right)
$$

which deduces $x(0)$ (exactly) from $u,\,y$ over $[0, t$ – -1]

in fact we have

$$
x(\tau - t + 1) = F\left(\begin{bmatrix} y(\tau - t + 1) \\ \vdots \\ y(\tau) \end{bmatrix} - T_t \begin{bmatrix} u(\tau - t + 1) \\ \vdots \\ u(\tau) \end{bmatrix}\right)
$$

 $i.e.,$ our observer estimates what state was $t-1$ epochs ago, given past $\ell=1$ $t -1$ inputs $\&$ outputs

observer is (multi-input, multi-output) *finite impulse response* (FIR) filter, with inputs u and y , and output \hat{x}

Invariance of unobservable set

fact: the unobservable subspace $\mathcal{N}(\mathcal{O})$ is invariant, $i.e.,$ if $z \in \mathcal{N}(\mathcal{O}),$ then $Az \in \mathcal{N}(\mathcal{O})$

proof: suppose $z \in \mathcal{N}(\mathcal{O})$, $i.e., CA^k$ ${}^k z = 0$ for $k = 0, \ldots, n$ −1

evidently CA^{k} ${}^k(Az) = 0$ for $k = 0, \ldots, n$ −2;

$$
CA^{n-1}(Az) = CA^{n}z = -\sum_{i=0}^{n-1} \alpha_i CA^{i} z = 0
$$

(by C-H) where

$$
\det(sI - A) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_0
$$

Continuous-time observability

continuous-time system with no sensor or state noise:

$$
\dot{x} = Ax + Bu, \quad y = Cx + Du
$$

can we deduce state x from u and y ?

let's look at derivatives of $y\!\!$:

$$
y = Cx + Du
$$

\n
$$
\dot{y} = C\dot{x} + D\dot{u} = CAx + CBu + Du
$$

\n
$$
\ddot{y} = CA^2x + CABu + CB\dot{u} + D\ddot{u}
$$

and so on

hence we have

$$
\begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix} = \mathcal{O}x + \mathcal{T} \begin{bmatrix} u \\ \dot{u} \\ \vdots \\ u^{(n-1)} \end{bmatrix}
$$

where $\mathcal O$ is the observability matrix and

 $\sqrt{ }$

$$
\mathcal{T} = \begin{bmatrix} D & 0 & \cdots \\ CB & D & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ CA^{n-2}B & CA^{n-3}B & \cdots & CB & D \end{bmatrix}
$$

(same matrices we encountered in discrete-time case!)

rewrite as

$$
\mathcal{O}x = \left[\begin{array}{c} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{array} \right] - \mathcal{T} \left[\begin{array}{c} u \\ \dot{u} \\ \vdots \\ u^{(n-1)} \end{array} \right]
$$

RHS is known; x is to be determined

hence if $\mathcal{N}(\mathcal{O})=\{0\}$ we can deduce $x(t)$ from derivatives of $u(t)$, $y(t)$ up
to exder x ... to order $n-1$

in this case we say system is observable

can construct an observer using any left inverse F of $\mathcal O$:

$$
x = F\left(\left[\begin{array}{c}y\\ \dot{y}\\ \vdots\\ y^{(n-1)}\end{array}\right] - T\left[\begin{array}{c}u\\ \dot{u}\\ \vdots\\ u^{(n-1)}\end{array}\right]\right)
$$

 $\bullet\,$ reconstructs $x(t)$ (exactly and instantaneously) from

$$
u(t),...,u^{(n-1)}(t), y(t),...,y^{(n-1)}(t)
$$

• derivative-based state reconstruction is dual of state transfer using impulsive inputs

^A converse

suppose $z \in \mathcal{N}(\mathcal{O})$ (the unobservable subspace), and u is any input, with $x,\ y$ the corresponding state and output, $\it{i.e.},$

$$
\dot{x} = Ax + Bu, \quad y = Cx + Du
$$

then state trajectory $\tilde{x}=x+e^{At}z$ satisfies

$$
\dot{\tilde{x}} = A\tilde{x} + Bu, \quad y = C\tilde{x} + Du
$$

 $i.e.,$ input/output signals $u,~y$ consistent with both state trajectories $x,~\tilde{x}$

hence if system is unobservable, no signal processing of any kind applied to u and y can deduce x

unobservable subspace $\mathcal{N}(\mathcal{O})$ gives fundamental ambiguity in deducing x from u, y

Least-squares observers

discrete-time system, with sensor noise:

$$
x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t) + v(t)
$$

we assume $\textbf{Rank}(\mathcal{O}_t)=n$ (hence, system is observable)

least-squares observer uses pseudo-inverse:

$$
\hat{x}(0) = \mathcal{O}_t^{\dagger} \left(\left[\begin{array}{c} y(0) \\ \vdots \\ y(t-1) \end{array} \right] - \mathcal{T}_t \left[\begin{array}{c} u(0) \\ \vdots \\ u(t-1) \end{array} \right] \right)
$$

where $\mathcal{O}_t^{\dagger} = \left(\mathcal{O}_t^T \mathcal{O}_t\right)^{-1} \mathcal{O}_t^T$

since $\mathcal{O}_t^{\dagger} \mathcal{O}_t = I$, we have

$$
\hat{x}_{\text{ls}}(0) = x(0) + \mathcal{O}_t^{\dagger} \left[\begin{array}{c} v(0) \\ \vdots \\ v(t-1) \end{array} \right]
$$

in particular, $\hat{x}_{\rm ls}(0) = x(0)$ if sensor noise is zero $(i.e.,$ observer recovers exact state in noiseless case) $\mathop{\sf interpretation}\nolimits\colon\hat{x}_{\rm ls}(0)$ minimizes discrepancy between

- $\bullet\,$ output \hat{y} that *would be* observed, with input u and initial state $x(0)$ (and no sensor noise), and
- $\bullet\,$ output y that *was* observed,

$$
\text{measured as } \sum_{\tau=0}^{t-1}\|\hat{y}(\tau)-y(\tau)\|^2
$$

can express least-squares initial state estimate as

$$
\hat{x}_{\rm ls}(0) = \left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau}\right)^{-1} \sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T \tilde{y}(\tau)
$$

where \tilde{y} is observed output with portion due to input subtracted: $\tilde{y} = y - h * u$ where h is impulse response

Statistical interpretation of least-squares observer

suppose sensor noise is $\textsf{IID}~\mathcal{N}(0,\sigma I)$

- called white noise
- $\bullet\,$ each sensor has noise variance σ

then $\hat{x}_{\rm ls}(0)$ is MMSE estimate of $x(0)$ when $x(0)$ is deterministic (or has 'infinite' prior variance)

estimation error $z = \hat{x}_{\rm ls}(0)$ $x(0)$ can be expressed as

$$
z = \mathcal{O}_t^{\dagger} \left[\begin{array}{c} v(0) \\ \vdots \\ v(t-1) \end{array} \right]
$$

hence $z~\sim~\mathcal{N}\left(0,\sigma\mathcal{O}^{\dagger}\mathcal{O}^{\dagger}\right)$ $\, T \,$ $^{T})$

 $i.e.,$ covariance of least-squares initial state estimation error is

$$
\sigma \mathcal{O}^\dagger \mathcal{O}^{\dagger T} = \sigma \left(\sum_{\tau=0}^{t-1} (A^T)^\tau C^T C A^\tau \right)^{-1}
$$

we'll assume $\sigma=1$ to simplify

matrix
$$
\left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau}\right)^{-1}
$$
 gives measure of 'how observable' the state is, over $[0, t-1]$

Infinite horizon error covariance

the matrix

$$
P = \lim_{t \to \infty} \left(\sum_{\tau=0}^{t-1} (A^T)^\tau C^T C A^\tau \right)^{-1}
$$

always exists, and gives the limiting error covariance in estimating $x(0)$ from u , y over longer and longer periods:

$$
\lim_{t \to \infty} \mathbf{E}(\hat{x}_{\text{ls}}(0|t-1) - x(0))(\hat{x}_{\text{ls}}(0|t-1) - x(0))^T = P
$$

 \bullet if A is stable, $P>0$

 $\it i.e.,$ can't estimate initial state perfectly even with infinite number of measurements $u(t),\,\,y(t),\,\,t=0,\dots$ (since memory of $x(0)$ fades \dots) $\,$

 \bullet if A is not stable, then P can have nonzero nullspace $i.e.,$ initial state estimation error gets arbitrarily small (at least in some directions) as more and more of signals u and y are observed

Observability Gramian

suppose system

$$
x(t+1) = Ax(t) + Bu(t),
$$
 $y(t) = Cx(t) + Du(t)$

is observable and stable

then $\sum_{\tau=0} (A^T)^\tau C^T C A^\tau$ converges as $t\to\infty$ since A^τ decays geometrically $t-1$ $\tau = 0$

the matrix $W_o = \sum_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} V_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} %{\textstyle\bigwedge^{3}} V_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} \mathfrak{S}_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} V_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} \mathfrak{S}_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} \mathfrak{S}_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} \mathfrak{S}_{\mathfrak{S}} %{\textstyle\bigwedge^{3}} \mathfrak{S}_{\mathfrak{S}}$ ∞ $\tau{=}0$ $(A^T)^\tau C^TCA^\tau$ is called the *observability Gramian*

 W_o satisfies the matrix equation

$$
W_o - A^T W_o A = C^T C
$$

which is called the observability *Lyapunov equation* (and can be solved exactly and efficiently)

Current state estimation

we have concentrated on estimating $x(0)$ from

$$
u(0),..., u(t-1), y(0),..., y(t-1)
$$

now we look at estimating $x(t-\,$ $-1)$ from this data

we assume

$$
x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t) + v(t)
$$

- no state noise
- $\bullet \;\, v$ is white, $\emph{i.e.},\; \sf IID\;\mathcal{N}(0, \sigma I)$

using

$$
x(t-1) = A^{t-1}x(0) + \sum_{\tau=0}^{t-2} A^{t-2-\tau}Bu(\tau)
$$

we get current state least-squares estimator:

$$
\hat{x}(t-1|t-1) = A^{t-1}\hat{x}_{\text{ls}}(0|t-1) + \sum_{\tau=0}^{t-2} A^{t-2-\tau}Bu(\tau)
$$

righthand term $(i.e.,$ effect of input on current state) is known estimation error $z = \hat{x}(t-\vec{x})$ $1|t$ $-1)$ $- \, x(t-\,$ $-1)$ can be expressed as

$$
z = A^{t-1} \mathcal{O}_t^{\dagger} \left[\begin{array}{c} v(0) \\ \vdots \\ v(t-1) \end{array} \right]
$$

hence $z~\sim~\mathcal{N}\left(0,\sigma A^{t}\right)$ −1 $^1{\cal O}^\dagger{\cal O}^\dagger$ $\, T \,$ $^{T}(A^{T}% ,\mathcal{O}_{A}\rightarrow\mathcal{O}_{A}\text{, }A^{T}\rightarrow\mathcal{O}_{A}\text{, }A^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\rightarrow\mathcal{O}_{A}\text{, }B^{T}\$ $^T)^t$ −1 $\left(\begin{smallmatrix}1\1\end{smallmatrix}\right)$

 $i.e.,$ covariance of least-squares current state estimation error is

$$
\sigma A^{t-1} \mathcal{O}^\dagger \mathcal{O}^{\dagger T} (A^T)^{t-1} = \sigma A^{t-1} \left(\sum_{\tau=0}^{t-1} (A^T)^\tau C^T C A^\tau \right)^{-1} (A^T)^{t-1}
$$

this matrix measures 'how observable' current state is, from past t inputs & outputs

- $\bullet\,$ decreases (in matrix sense) as t increases
- hence has limit as $t \to \infty$ (gives limiting error covariance of estimating current state given all past inputs ℓ_t outputs) current state ^given all past inputs & outputs)

Example

- $\bullet\,$ particle in ${\sf R}^2$ moves with uniform velocity
- \bullet (linear, noisy) range measurements from directions -15° , 0° , 20° , 30° , once per second
- $\bullet\,$ range noises IID $\mathcal{N}(0,1)$
- no assumptions about initial position & velocity

problem: estimate initial position & velocity from range measurements

express as linear system

$$
x(t+1) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x(t), \qquad y(t) = \begin{bmatrix} k_1^T \\ \vdots \\ k_4^T \end{bmatrix} x(t) + v(t)
$$

- $\bullet \,\, (x_1(t), x_2(t))$ is position of particle
- $\bullet \ \left(x_{3}(t), x_{4}(t) \right)$ is velocity of particle
- $\bullet \ \ v(t) \sim \mathcal{N}(0,I)$
- $\bullet \ \ k_i$ is unit vector from sensor i to origin

true initial position & velocities: $x(0) = (1 - 3 - 0.04 \; 0.03)$

range measurements (& noiseless versions):

- $\bullet\,$ estimate based on $(y(0),\ldots,y(t))$ is $\hat{x}(0|t)$
- actual RMS position error is

$$
\sqrt{(\hat{x}_1(0|t) - x_1(0))^2 + (\hat{x}_2(0|t) - x_2(0))^2}
$$

(similarly for actual RMS velocity error)

• position error std. deviation is

$$
\sqrt{\mathbf{E}((\hat{x}_1(0|t)-x_1(0))^2+(\hat{x}_2(0|t)-x_2(0))^2)}
$$

(similarly for velocity)

Example ctd: state prediction

predict particle position 10 seconds in future:

 $\hat{x}(t+10|t) = A^{t+10}\hat{x}_{\rm ls}(0|t)$

$$
x(t+10) = A^{t+10}x(0)
$$

plot shows estimates (dashed), and actual value (solid) of position of particle 10 steps ahead, for $10 \leq t \leq 110$

Continuous-time least-squares state estimation

assume $\dot{x} = Ax + Bu$, $y = Cx + Du + v$ is observable

least-squares observer is

$$
\hat{x}_{\rm ls}(0) = \left(\int_0^t e^{A^T \tau} C^T C e^{A \tau} d\tau\right)^{-1} \int_0^t e^{A^T \bar{t}} C^T \tilde{y}(\bar{t}) d\bar{t}
$$

where $\tilde{y}=y-h*u$ is observed output minus part due to input

then $\hat{x}_{\rm ls}(0) = x(0)$ if $v = 0$

 $\hat{x}_{\rm ls}(0)$ is limiting MMSE estimate when $v(t) \sim \mathcal{N}(0, \sigma I)$ and
E v(t)v(s)T = 0 unless to sig very small. $\mathbf{E}\,v(t)v(s)^T=0$ unless $t-s$ is very small

(called white noise — ^a tricky concept)