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Lecture 5
Observability and state estimation

e state estimation

e discrete-time observability

e observability — controllability duality
e observers for noiseless case

e continuous-time observability

e |east-squares observers

e statistical interpretation

e example
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State estimation set up

we consider the discrete-time system
r(t+1) = Ax(t) + Bu(t) + w(t), y(t)=Cx(t) + Du(t) + v(t)

e w Is state disturbance or noise

® VU IS SeNnsor noise or error

o A B, C, and D are known

e u and y are observed over time interval [0,¢ — 1]

e w and v are not known, but can be described statistically or assumed
small
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State estimation problem

state estimation problem: estimate z(s) from

u(0),...,u(t—1), y(0),...,y(t —1)

e s = (: estimate initial state
e s =1 — 1: estimate current state

e s =t: estimate (i.e., predict) next state

an algorithm or system that yields an estimate Z(s) is called an observer or
state estimator

A

z(s) is denoted z(s|t — 1) to show what information estimate is based on
(read, “Z(s) given t — 1")
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Noiseless case

let's look at finding x(0), with no state or measurement noise:
x(t+ 1) = Az(t) + Bu(t), y(t) = Cx(t) + Du(t)

with z(¢) € R", u(t) € R™, y(t) € RP

then we have
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where

C
CA

CvA:t—l

e (J; maps initials state into resulting output over [0,¢ — 1]

D
CB

e 7; maps input to output over [0,¢ — 1]

hence we have

Ot.fl?(()) =

RHS is known, z(0) is to be determined
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hence:

e can uniquely determine x(0) if and only if N'(O;) = {0}

o N(O;) gives ambiguity in determining xz(0)

o if 2(0) € N(O;) and u = 0, output is zero over interval [0,¢ — 1]

e input u does not affect ability to determine z(0);
Its effect can be subtracted out

Observability and state estimation
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Observability matrix

by C-H theorem, each A is linear combination of AY, ..., A"~!

hence for t > n, N(O;) = N(O) where
- o -

O=0, = CA

I CAn—l

is called the observability matrix

if (0) can be deduced from u and y over [0,t — 1] for any ¢, then x(0)
can be deduced from u and y over [0,n — 1]

N (O) is called unobservable subspace; describes ambiguity in determining
state from input and output

system is called observable if N'(O) = {0}, i.e., Rank(O) =n
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Observability — controllability duality

let (4, B,C, D) be dual of system (A, B,C, D), i.e.,

controllability matrix of dual system is

C = [BAB---A"'B]
— [CT ATCT L (AT)n—lcT]
= Of

transpose of observability matrix

similarly we have O = CT

Observability and state estimation
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thus, system is observable (controllable) if and only if dual system is
controllable (observable)

in fact, )
N(0O) = range(O?)* = range(C)*

i.e., unobservable subspace is orthogonal complement of controllable
subspace of dual
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Observers for noiseless case

suppose Rank(O;) = n (i.e., system is observable) and let I’ be any left
inverse of Oy, t.e., FO;, =1

then we have the observer

z(0) = F

y(_O)

y(t _ 1)

-7

I u(t:—l) |

u(0)

which deduces x(0) (exactly) from u, y over [0,¢ — 1]

in fact we have

r(tr—t+1)=F
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7.€e., our observer estimates what state was ¢ — 1 epochs ago, given past
t — 1 inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter,
with inputs u and y, and output %

Observability and state estimation 5-11



Invariance of unobservable set

fact: the unobservable subspace NV (O) is invariant, i.e., if z € N(O),
then Az € N(O)
proof: suppose z € N (0), i.e., CA*z =0fork=0,...,n—1
evidently CA*(Az) =0 fork=0,...,n — 2;
n—1 .
CA" Y(Az) =CA"z2=-) oCAz=0

1=0

(by C-H) where

det(sI —A) = s" +ap_15" 1+ -+
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Continuous-time observability

continuous-time system with no sensor or state noise:

t=Ax+ Bu, y=Cx+ Du

can we deduce state x from u and y?

let's look at derivatives of y:

y = Cx+ Du
y = Cz+ Du=CAx + CBu+ Du
ij = CA*x+ CABu+ CBu+ Dii

and so on

Observability and state estimation
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hence we have

?_J =Q0x+7T u
y<n:—1> 2 (n—1)
where O is the observability matrix and
_ N 0 i,
T _ C’.B D 0
| CA"?B CA"SB ... CB D

(same matrices we encountered in discrete-time case!)
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rewrite as

_ ’ - _ ” -
Oz = y — T u
] y(n—l) | ] u(n—l) |

RHS is known: x is to be determined

hence if N'(O) = {0} we can deduce z(t) from derivatives of u(t), y(t) up
to order n — 1

in this case we say system is observable

can construct an observer using any left inverse F' of O:

Y U
r=F y — 7T u
] y(n—l) | ] u(n—l) |
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e reconstructs x(t) (exactly and instantaneously) from

w(t), ..., u™ V@), y),...,y" (@)

e derivative-based state reconstruction is dual of state transfer using
impulsive inputs
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A converse

suppose z € N(QO) (the unobservable subspace), and « is any input, with
x, y the corresponding state and output, i.e.,

t=Ax+ Bu, y=Cx+ Du

then state trajectory & = = + e’z satisfies

T =A%+ Bu, y=C%+ Du

i.e., input/output signals u, y consistent with both state trajectories z,

hence if system is unobservable, no signal processing of any kind applied to
u and y can deduce x

unobservable subspace N (O) gives fundamental ambiguity in deducing x
from u, y
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Least-squares observers

discrete-time system, with sensor noise:

2(t+1) = Az(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

we assume Rank(O;) = n (hence, system is observable)

least-squares observer uses pseudo-inverse:

#(0) = O] e -7

where Of = (0T0,) " OF
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since OZOt = I, we have

#15(0) = 2(0) + O]

in particular, 215(0) = x(0) if sensor noise is zero
(i.e., observer recovers exact state in noiseless case)
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interpretation: 21,(0) minimizes discrepancy between

e output y that would be observed, with input u and initial state z(0)
(and no sensor noise), and

e output y that was observed,

t—1

measured as Z 19(7) — y(7)]|)?

7=0

can express least-squares initial state estimate as

1

#15(0) = i(AT)TCTCAT i(AT)TCTg(T)

where ¢ is observed output with portion due to input subtracted:
y =y — h *u where h is impulse response

Observability and state estimation
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Statistical interpretation of least-squares observer

suppose sensor noise is [ID N (0,01)

e called white noise

e cach sensor has noise variance o

then 215(0) is MMSE estimate of x(0) when x(0) is deterministic (or has
‘infinite’ prior variance)

estimation error z = Z)5(0) — x(0) can be expressed as

v(0)
z = OZ :

v(t . 1)

hence z ~ N(O,JOTOTT)
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i.e., covariance of least-squares initial state estimation error is

—1

t—1
cO'O" =0 [ Y (AT CTCA”
7=0
we'll assume o = 1 to simplify
t—1 -1
matrix Z(AT)TCTCAT gives measure of ‘how observable’ the

7=0
state is, over [0,t — 1]
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Infinite horizon error covariance

the matrix
t—1 —1
T TNT ~T T
P = lim Z?A)CCA

always exists, and gives the limiting error covariance in estimating x(0)
from u, y over longer and longer periods:

lim E(#(0t — 1) — 2(0))(2(0[t — 1) — 2(0)) = P

t—o0

o if Aisstable, P >0
i.e., can't estimate initial state perfectly even with infinite number of
measurements u(t), y(t), t =0,... (since memory of x(0) fades . . .)

e if A is not stable, then P can have nonzero nullspace
i.e., initial state estimation error gets arbitrarily small (at least in some
directions) as more and more of signals u and y are observed
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Observability Gramian
suppose system
z(t+1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is observable and stable
t—1

then Z(AT)TCTCAT converges as t — oo since A” decays geometrically
7=0

the matrix W, = Z(AT)TC’TCAT is called the observability Gramian
7=0

W, satisfies the matrix equation
w,—Alw,A=c'C

which is called the observability Lyapunov equation (and can be solved
exactly and efficiently)
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Current state estimation

we have concentrated on estimating x(0) from

u(0),...,u(t—1), y(0),...,y(t—1)

now we look at estimating x(t — 1) from this data

2(t+1) = Az(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

e Nno state noise
e v is white, i.e., IID N(0,01)

using
t—2

p(t—1) = A" 'z(0) + Y~ A">"Bu(r)

7=0

Observability and state estimation
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we get current state least-squares estimator:

t—2
B(t— 1t —1) = A" @0t — 1) + >~ A>T Bu(r)
7=0

righthand term (i.e., effect of input on current state) is known

estimation error z = Z(t — 1|t — 1) — x(¢t — 1) can be expressed as
Cw(0)
2= AT1O] :
v(t —1)

hence z ~ N (0,04 tOTOT (AT 1)
1.e., covariance of least-squares current state estimation error is

t—1 —1
O_At—loTOTT(AT)t—l _ O_At—l (Z(AT)TCTCAT> (AT)t—l

7=0
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this matrix measures ‘how observable’ current state is, from past ¢ inputs
& outputs

e decreases (in matrix sense) as t increases

e hence has limit as t — oo (gives limiting error covariance of estimating
current state given all past inputs & outputs)
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Example

e particle in R* moves with uniform velocity

e (linear, noisy) range measurements from directions —15°, 0°, 20°, 30°,
once per second

e range noises 11D A(0,1)

e no assumptions about initial position & velocity

particle o©

@
e
\. range sensors
problem: estimate initial position & velocity from range measurements
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express as linear system

r(t+1) =

o OO =

S O~ O

O =)k O =

_ O = O

o (r1(t),z2(t)) is position of particle

o (z3(t),x4(t)) is velocity of particle

o v(t) ~N(0,1)

e k; is unit vector from sensor ¢ to origin

true initial position & velocities: z(0) = (1 —3 —0.04 0.03)

Observability and state estimation
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range measurements (& noiseless versions):

Observa

measurements from sensors 1 — 4

range

bility and state estimation
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e estimate based on (y(0),...,y(t)) is (0|t)

e actual RMS position error is

V (21(0[t) — 21(0))2 + (22(0t) — 22(0))?

(similarly for actual RMS velocity error)

e position error std. deviation is

VE ((21(0]t) = 21(0))2 + (22(0]t) — 22(0))?)

(similarly for velocity)
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Example ctd: state prediction

predict particle position 10 seconds in future:

Z(t+10|t) = A"10%(0t)

z(t +10) = A*192(0)

plot shows estimates (dashed), and actual value (solid) of position of
particle 10 steps ahead, for 10 < ¢ <110

Observability and state estimation 5-33



71 (]t — 10), Zo(t]t — 10)

20 40 60 80 100 120

Observability and state estimation 5-34



Continuous-time least-squares state estimation

assume © = Ax + Bu, y = Cx + Du + v is observable
least-squares observer is
—1

t t ~
115(0) = ( / e TOT CeAT dT) / e TOT () di
0 0

where y = y — h * u is observed output minus part due to input
then 215(0) = 2(0) if v =0

T15(0) is limiting MMSE estimate when v(t) ~ N (0,01) and
Ev(t)v(s)l = 0 unless t — s is very small

(called white noise — a tricky concept)
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