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Lecture 12

Basic Lyapunov theory

• stability

• positive definite functions

• global Lyapunov stability theorems

• Lasalle’s theorem

• converse Lyapunov theorems

• finding Lyapunov functions
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Some stability definitions

we consider nonlinear time-invariant system ẋ = f(x), where f : Rn → Rn

a point xe ∈ Rn is an equilibrium point of the system if f(xe) = 0

xe is an equilibrium point ⇐⇒ x(t) = xe is a trajectory

suppose xe is an equilibrium point

• system is globally asymptotically stable (G.A.S.) if for every trajectory
x(t), we have x(t) → xe as t → ∞
(implies xe is the unique equilibrium point)

• system is locally asymptotically stable (L.A.S.) near or at xe if there is
an R > 0 s.t. ‖x(0) − xe‖ ≤ R =⇒ x(t) → xe as t → ∞
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• often we change coordinates so that xe = 0 (i.e., we use x̃ = x − xe)

• a linear system ẋ = Ax is G.A.S. (with xe = 0) ⇔ ℜλi(A) < 0,
i = 1, . . . , n

• a linear system ẋ = Ax is L.A.S. (near xe = 0) ⇔ ℜλi(A) < 0,
i = 1, . . . , n
(so for linear systems, L.A.S. ⇔ G.A.S.)

• there are many other variants on stability (e.g., stability, uniform
stability, exponential stability, . . . )

• when f is nonlinear, establishing any kind of stability is usually very
difficult
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Energy and dissipation functions

consider nonlinear system ẋ = f(x), and function V : Rn → R

we define V̇ : Rn → R as V̇ (z) = ∇V (z)Tf(z)

V̇ (z) gives
d

dt
V (x(t)) when z = x(t), ẋ = f(x)

we can think of V as generalized energy function, and −V̇ as the
associated generalized dissipation function

Basic Lyapunov theory 12–4



Positive definite functions

a function V : Rn → R is positive definite (PD) if

• V (z) ≥ 0 for all z

• V (z) = 0 if and only if z = 0

• all sublevel sets of V are bounded

last condition equivalent to V (z) → ∞ as z → ∞

example: V (z) = zTPz, with P = PT , is PD if and only if P > 0
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Lyapunov theory

Lyapunov theory is used to make conclusions about trajectories of a system
ẋ = f(x) (e.g., G.A.S.) without finding the trajectories

(i.e., solving the differential equation)

a typical Lyapunov theorem has the form:

• if there exists a function V : Rn → R that satisfies some conditions on
V and V̇

• then, trajectories of system satisfy some property

if such a function V exists we call it a Lyapunov function (that proves the
property holds for the trajectories)

Lyapunov function V can be thought of as generalized energy function for
system
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A Lyapunov boundedness theorem

suppose there is a function V that satisfies

• all sublevel sets of V are bounded

• V̇ (z) ≤ 0 for all z

then, all trajectories are bounded, i.e., for each trajectory x there is an R
such that ‖x(t)‖ ≤ R for all t ≥ 0

in this case, V is called a Lyapunov function (for the system) that proves
the trajectories are bounded
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to prove it, we note that for any trajectory x

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ)) dτ ≤ V (x(0))

so the whole trajectory lies in {z | V (z) ≤ V (x(0))}, which is bounded

also shows: every sublevel set {z | V (z) ≤ a} is invariant
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A Lyapunov global asymptotic stability theorem

suppose there is a function V such that

• V is positive definite

• V̇ (z) < 0 for all z 6= 0, V̇ (0) = 0

then, every trajectory of ẋ = f(x) converges to zero as t → ∞
(i.e., the system is globally asymptotically stable)

intepretation:

• V is positive definite generalized energy function

• energy is always dissipated, except at 0
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Proof

suppose trajectory x(t) does not converge to zero.

V (x(t)) is decreasing and nonnegative, so it converges to, say, ǫ as t → ∞.

Since x(t) doesn’t converge to 0, we must have ǫ > 0, so for all t,

ǫ ≤ V (x(t)) ≤ V (x(0)).

C = {z | ǫ ≤ V (z) ≤ V (x(0))} is closed and bounded, hence compact. So V̇

(assumed continuous) attains its supremum on C, i.e., supz∈C V̇ = −a < 0. Since

V̇ (x(t)) ≤ −a for all t, we have

V (x(T )) = V (x(0)) +

Z T

0

V̇ (x(t)) dt ≤ V (x(0)) − aT

which for T > V (x(0))/a implies V (x(0)) < 0, a contradiction.

So every trajectory x(t) converges to 0, i.e., ẋ = f(x) is G.A.S.
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A Lyapunov exponential stability theorem

suppose there is a function V and constant α > 0 such that

• V is positive definite

• V̇ (z) ≤ −αV (z) for all z

then, there is an M such that every trajectory of ẋ = f(x) satisfies
‖x(t)‖ ≤ Me−αt/2‖x(0)‖
(this is called global exponential stability (G.E.S.))

idea: V̇ ≤ −αV gives guaranteed minimum dissipation rate, proportional
to energy
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Example

consider system

ẋ1 = −x1 + g(x2), ẋ2 = −x2 + h(x1)

where |g(u)| ≤ |u|/2, |h(u)| ≤ |u|/2

two first order systems with nonlinear cross-coupling

x1

x2

1

s + 1

1

s + 1

g(·) h(·)
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let’s use Lyapunov theorem to show it’s globally asymptotically stable

we use V = (x2
1 + x2

2)/2

required properties of V are clear (V ≥ 0, etc.)

let’s bound V̇ :

V̇ = x1ẋ1 + x2ẋ2

= −x2
1 − x2

2 + x1g(x2) + x2h(x1)

≤ −x2
1 − x2

2 + |x1x2|

≤ −(1/2)(x2
1 + x2

2)

= −V

where we use |x1x2| ≤ (1/2)(x2
1 + x2

2) (derived from (|x1| − |x2|)
2 ≥ 0)

we conclude system is G.A.S. (in fact, G.E.S.)
without knowing the trajectories
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Lasalle’s theorem

Lasalle’s theorem (1960) allows us to conclude G.A.S. of a system with
only V̇ ≤ 0, along with an observability type condition

we consider ẋ = f(x)

suppose there is a function V : Rn → R such that

• V is positive definite

• V̇ (z) ≤ 0

• the only solution of ẇ = f(w), V̇ (w) = 0 is w(t) = 0 for all t

then, the system ẋ = f(x) is G.A.S.
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• last condition means no nonzero trajectory can hide in the “zero
dissipation” set

• unlike most other Lyapunov theorems, which extend to time-varying
systems, Lasalle’s theorem requires time-invariance
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A Lyapunov instability theorem

suppose there is a function V : Rn → R such that

• V̇ (z) ≤ 0 for all z (or just whenever V (z) ≤ 0)

• there is w such that V (w) < V (0)

then, the trajectory of ẋ = f(x) with x(0) = w does not converge to zero
(and therefore, the system is not G.A.S.)

to show it, we note that V (x(t)) ≤ V (x(0)) = V (w) < V (0) for all t ≥ 0

but if x(t) → 0, then V (x(t)) → V (0); so we cannot have x(t) → 0
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A Lyapunov divergence theorem

suppose there is a function V : Rn → R such that

• V̇ (z) < 0 whenever V (z) < 0

• there is w such that V (w) < 0

then, the trajectory of ẋ = f(x) with x(0) = w is unbounded, i.e.,

sup
t≥0

‖x(t)‖ = ∞

(this is not quite the same as limt→∞ ‖x(t)‖ = ∞)
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Proof of Lyapunov divergence theorem

let ẋ = f(x), x(0) = w. let’s first show that V (x(t)) ≤ V (w) for all t ≥ 0.

if not, let T denote the smallest positive time for which V (x(T )) = V (w). then over

[0, T ], we have V (x(t)) ≤ V (w) < 0, so V̇ (x(t)) < 0, and so

Z T

0

V̇ (x(t)) dt < 0

the lefthand side is also equal to

Z T

0

V̇ (x(t)) dt = V (x(T )) − V (x(0)) = 0

so we have a contradiction.

it follows that V (x(t)) ≤ V (x(0)) for all t, and therefore V̇ (x(t)) < 0 for all t.

now suppose that ‖x(t)‖ ≤ R, i.e., the trajectory is bounded.

{z | V (z) ≤ V (x(0)), ‖z‖ ≤ R} is compact, so there is a β > 0 such that

V̇ (z) ≤ −β whenever V (z) ≤ V (x(0)) and ‖z‖ ≤ R.
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we conclude V (x(t)) ≤ V (x(0)) − βt for all t ≥ 0, so V (x(t)) → −∞, a

contradiction.
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Converse Lyapunov theorems

a typical converse Lyapunov theorem has the form

• if the trajectories of system satisfy some property

• then there exists a Lyapunov function that proves it

a sharper converse Lyapunov theorem is more specific about the form of
the Lyapunov function

example: if the linear system ẋ = Ax is G.A.S., then there is a quadratic
Lyapunov function that proves it (we’ll prove this later)
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A converse Lyapunov G.E.S. theorem

suppose there is β > 0 and M such that each trajectory of ẋ = f(x)
satisfies

‖x(t)‖ ≤ Me−βt‖x(0)‖ for all t ≥ 0

(called global exponential stability, and is stronger than G.A.S.)

then, there is a Lyapunov function that proves the system is exponentially
stable, i.e., there is a function V : Rn → R and constant α > 0 s.t.

• V is positive definite

• V̇ (z) ≤ −αV (z) for all z
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Proof of converse G.E.S. Lyapunov theorem

suppose the hypotheses hold, and define

V (z) =

∫ ∞

0

‖x(t)‖2 dt

where x(0) = z, ẋ = f(x)

since ‖x(t)‖ ≤ Me−βt‖z‖, we have

V (z) =

∫ ∞

0

‖x(t)‖2 dt ≤

∫ ∞

0

M2e−2βt‖z‖2 dt =
M2

2β
‖z‖2

(which shows integral is finite)
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let’s find V̇ (z) =
d

dt

∣

∣

∣

∣

t=0

V (x(t)), where x(t) is trajectory with x(0) = z

V̇ (z) = lim
t→0

(1/t) (V (x(t)) − V (x(0)))

= lim
t→0

(1/t)

(
∫ ∞

t

‖x(τ)‖2 dτ −

∫ ∞

0

‖x(τ)‖2 dτ

)

= lim
t→0

(−1/t)

∫ t

0

‖x(τ)‖2 dτ

= −‖z‖2

now let’s verify properties of V

V (z) ≥ 0 and V (z) = 0 ⇔ z = 0 are clear

finally, we have V̇ (z) = −zTz ≤ −αV (z), with α = 2β/M2
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Finding Lyapunov functions

• there are many different types of Lyapunov theorems

• the key in all cases is to find a Lyapunov function and verify that it has
the required properties

• there are several approaches to finding Lyapunov functions and verifying
the properties

one common approach:

• decide form of Lyapunov function (e.g., quadratic), parametrized by
some parameters (called a Lyapunov function candidate)

• try to find values of parameters so that the required hypotheses hold
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Other sources of Lyapunov functions

• value function of a related optimal control problem

• linear-quadratic Lyapunov theory (next lecture)

• computational methods

• converse Lyapunov theorems

• graphical methods (really!)

(as you might guess, these are all somewhat related)
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