EE363 Winter 2008-09

Lecture 8 The Kalman filter

- Linear system driven by stochastic process
- Statistical steady-state
- Linear Gauss-Markov model
- Kalman filter
- Steady-state Kalman filter

Linear system driven by stochastic process

we consider linear dynamical system $x_{t+1} = Ax_t + Bu_t$, with x_0 and u_0, u_1, \ldots random variables

we'll use notation

$$\bar{x}_t = \mathbf{E} x_t, \qquad \Sigma_x(t) = \mathbf{E}(x_t - \bar{x}_t)(x_t - \bar{x}_t)^T$$

and similarly for \bar{u}_t , $\Sigma_u(t)$

taking expectation of $x_{t+1} = Ax_t + Bu_t$ we have

$$\bar{x}_{t+1} = A\bar{x}_t + B\bar{u}_t$$

i.e., the means propagate by the same linear dynamical system

now let's consider the covariance

$$x_{t+1} - \bar{x}_{t+1} = A(x_t - \bar{x}_t) + B(u_t - \bar{u}_t)$$

and so

$$\Sigma_x(t+1) = \mathbf{E} \left(A(x_t - \bar{x}_t) + B(u_t - \bar{u}_t) \right) \left(A(x_t - \bar{x}_t) + B(u_t - \bar{u}_t) \right)^T$$
$$= A\Sigma_x(t)A^T + B\Sigma_u(t)B^T + A\Sigma_{xu}(t)B^T + B\Sigma_{ux}(t)A^T$$

where

$$\Sigma_{xu}(t) = \Sigma_{ux}(t)^T = \mathbf{E}(x_t - \bar{x}_t)(u_t - \bar{u}_t)^T$$

thus, the covariance $\Sigma_x(t)$ satisfies another, Lyapunov-like linear dynamical system, driven by Σ_{xu} and Σ_u

consider special case $\Sigma_{xu}(t)=0$, i.e., x and u are uncorrelated, so we have Lyapunov iteration

$$\Sigma_x(t+1) = A\Sigma_x(t)A^T + B\Sigma_u(t)B^T,$$

which is stable if and only if A is stable

if A is stable and $\Sigma_u(t)$ is constant, $\Sigma_x(t)$ converges to Σ_x , called the steady-state covariance, which satisfies Lyapunov equation

$$\Sigma_x = A\Sigma_x A^T + B\Sigma_u B^T$$

thus, we can calculate the steady-state covariance of \boldsymbol{x} exactly, by solving a Lyapunov equation

(useful for starting simulations in statistical steady-state)

Example

we consider $x_{t+1} = Ax_t + w_t$, with

$$A = \left[\begin{array}{cc} 0.6 & -0.8 \\ 0.7 & 0.6 \end{array} \right],$$

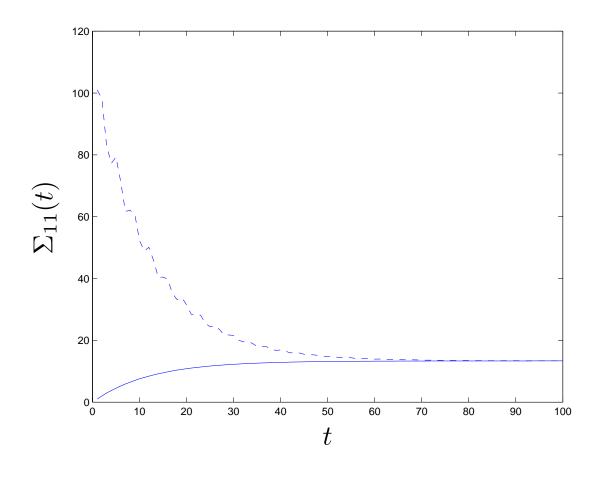
where w_t are IID $\mathcal{N}(0,I)$

eigenvalues of A are $0.6\pm0.75j$, with magnitude 0.96, so A is stable we solve Lyapunov equation to find steady-state covariance

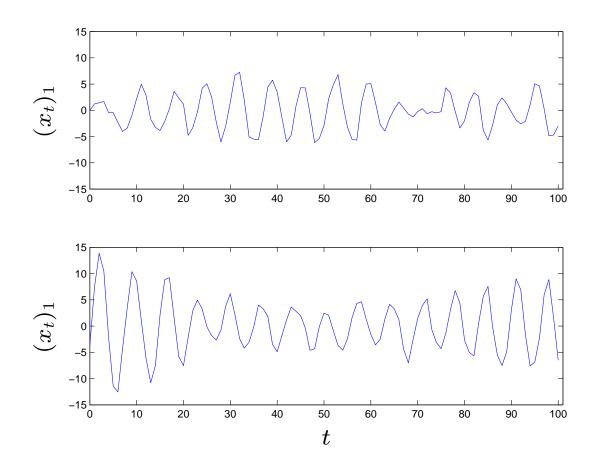
$$\Sigma_x = \left[\begin{array}{cc} 13.35 & -0.03 \\ -0.03 & 11.75 \end{array} \right]$$

covariance of x_t converges to Σ_x no matter its initial value

two initial state distributions: $\Sigma_x(0)=0$, $\Sigma_x(0)=10^2I$ plot shows $\Sigma_{11}(t)$ for the two cases



$(x_t)_1$ for one realization from each case:

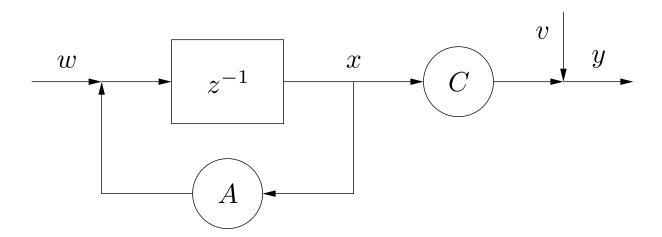


Linear Gauss-Markov model

we consider linear dynamical system

$$x_{t+1} = Ax_t + w_t, \qquad y_t = Cx_t + v_t$$

- $x_t \in \mathbf{R}^n$ is the state; $y_t \in \mathbf{R}^p$ is the observed output
- $w_t \in \mathbf{R}^n$ is called *process noise* or state noise
- $v_t \in \mathbf{R}^p$ is called *measurement noise*



Statistical assumptions

- x_0 , $w_0, w_1, \ldots, v_0, v_1, \ldots$ are jointly Gaussian and independent
- w_t are IID with $\mathbf{E} w_t = 0$, $\mathbf{E} w_t w_t^T = W$
- v_t are IID with $\mathbf{E} v_t = 0$, $\mathbf{E} v_t v_t^T = V$
- $\mathbf{E} x_0 = \bar{x}_0$, $\mathbf{E}(x_0 \bar{x}_0)(x_0 \bar{x}_0)^T = \Sigma_0$

(it's not hard to extend to case where w_t , v_t are not zero mean)

we'll denote $X_t = (x_0, \dots, x_t)$, etc.

since X_t and Y_t are linear functions of x_0 , W_t , and V_t , we conclude they are all jointly Gaussian (i.e., the process x, w, v, y is Gaussian)

Statistical properties

- sensor noise v independent of x
- w_t is independent of x_0, \ldots, x_t and y_0, \ldots, y_t
- Markov property: the process x is Markov, i.e.,

$$x_t | x_0, \dots, x_{t-1} = x_t | x_{t-1}$$

roughly speaking: if you know x_{t-1} , then knowledge of x_{t-2}, \ldots, x_0 doesn't give any more information about x_t

Mean and covariance of Gauss-Markov process

mean satisfies $\bar{x}_{t+1} = A\bar{x}_t$, $\mathbf{E} x_0 = \bar{x}_0$, so $\bar{x}_t = A^t \bar{x}_0$

covariance satisfies

$$\Sigma_x(t+1) = A\Sigma_x(t)A^T + W$$

if A is stable, $\Sigma_x(t)$ converges to steady-state covariance Σ_x , which satisfies Lyapunov equation

$$\Sigma_x = A\Sigma_x A^T + W$$

Conditioning on observed output

we use the notation

$$\hat{x}_{t|s} = \mathbf{E}(x_t|y_0, \dots y_s),$$

$$\Sigma_{t|s} = \mathbf{E}(x_t - \hat{x}_{t|s})(x_t - \hat{x}_{t|s})^T$$

- ullet the random variable $x_t|y_0,\ldots,y_s$ is Gaussian, with mean $\hat{x}_{t|s}$ and covariance $\Sigma_{t|s}$
- ullet $\hat{x}_{t|s}$ is the minimum mean-square error estimate of x_t , based on y_0,\dots,y_s
- ullet $\Sigma_{t|s}$ is the covariance of the error of the estimate $\hat{x}_{t|s}$

State estimation

we focus on two state estimation problems:

- finding $\hat{x}_{t|t}$, *i.e.*, estimating the current state, based on the current and past observed outputs
- finding $\hat{x}_{t+1|t}$, *i.e.*, predicting the next state, based on the current and past observed outputs

since x_t, Y_t are jointly Gaussian, we can use the standard formula to find $\hat{x}_{t|t}$ (and similarly for $\hat{x}_{t+1|t}$)

$$\hat{x}_{t|t} = \bar{x}_t + \Sigma_{x_t Y_t} \Sigma_{Y_t}^{-1} (Y_t - \bar{Y}_t)$$

the inverse in the formula, $\Sigma_{Y_t}^{-1}$, is size $pt \times pt$, which grows with t the *Kalman filter* is a clever method for computing $\hat{x}_{t|t}$ and $\hat{x}_{t+1|t}$ recursively

Measurement update

let's find $\hat{x}_{t|t}$ and $\Sigma_{t|t}$ in terms of $\hat{x}_{t|t-1}$ and $\Sigma_{t|t-1}$

start with $y_t = Cx_t + v_t$, and condition on Y_{t-1} :

$$y_t|Y_{t-1} = Cx_t|Y_{t-1} + v_t|Y_{t-1} = Cx_t|Y_{t-1} + v_t$$

since v_t and Y_{t-1} are independent

so $x_t|Y_{t-1}$ and $y_t|Y_{t-1}$ are jointly Gaussian with mean and covariance

$$\begin{bmatrix} \hat{x}_{t|t-1} \\ C\hat{x}_{t|t-1} \end{bmatrix}, \begin{bmatrix} \sum_{t|t-1} & \sum_{t|t-1} C^T \\ C\sum_{t|t-1} & C\sum_{t|t-1} C^T + V \end{bmatrix}$$

now use standard formula to get mean and covariance of

$$(x_t|Y_{t-1})|(y_t|Y_{t-1}),$$

which is exactly the same as $x_t|Y_t$:

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} (y_t - C\hat{x}_{t|t-1})$$

$$\Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} C\Sigma_{t|t-1}$$

this gives us $\hat{x}_{t|t}$ and $\Sigma_{t|t}$ in terms of $\hat{x}_{t|t-1}$ and $\Sigma_{t|t-1}$

this is called the *measurement update* since it gives our updated estimate of x_t based on the measurement y_t becoming available

Time update

now let's increment time, using $x_{t+1} = Ax_t + w_t$ condition on Y_t to get

$$x_{t+1}|Y_t = Ax_t|Y_t + w_t|Y_t$$
$$= Ax_t|Y_t + w_t$$

since w_t is independent of Y_t

therefore we have $\hat{x}_{t+1|t} = A\hat{x}_{t|t}$ and

$$\Sigma_{t+1|t} = \mathbf{E}(\hat{x}_{t+1|t} - x_{t+1})(\hat{x}_{t+1|t} - x_{t+1})^{T}$$

$$= \mathbf{E}(A\hat{x}_{t|t} - Ax_{t} - w_{t})(A\hat{x}_{t|t} - Ax_{t} - w_{t})^{T}$$

$$= A\Sigma_{t|t}A^{T} + W$$

Kalman filter

measurement and time updates together give a recursive solution start with prior mean and covariance, $\hat{x}_{0|-1}=\bar{x}_0$, $\Sigma_{0|-1}=\Sigma_0$ apply the measurement update

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} (y_t - C\hat{x}_{t|t-1})$$

$$\Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V\right)^{-1} C\Sigma_{t|t-1}$$

to get $\hat{x}_{0|0}$ and $\Sigma_{0|0}$; then apply time update

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t}, \qquad \Sigma_{t+1|t} = A\Sigma_{t|t}A^T + W$$

to get $\hat{x}_{1|0}$ and $\Sigma_{1|0}$

now, repeat measurement and time updates . . .

Riccati recursion

we can express measurement and time updates for Σ as

$$\Sigma_{t+1|t} = A\Sigma_{t|t-1}A^{T} + W - A\Sigma_{t|t-1}C^{T}(C\Sigma_{t|t-1}C^{T} + V)^{-1}C\Sigma_{t|t-1}A^{T}$$

which is a Riccati recursion, with initial condition $\Sigma_{0|-1} = \Sigma_0$

- \bullet $\Sigma_{t|t-1}$ can be computed before any observations are made
- thus, we can calculate the estimation error covariance *before* we get any observed data

Comparison with LQR

in LQR,

- Riccati recursion for P_t (which determines the minimum cost to go from a point at time t) runs backward in time
- ullet we can compute cost-to-go before knowing x_t

in Kalman filter,

- Riccati recursion for $\Sigma_{t|t-1}$ (which is the state prediction error covariance at time t) runs forward in time
- ullet we can compute $\Sigma_{t|t-1}$ before we actually get any observations

Observer form

we can express KF as

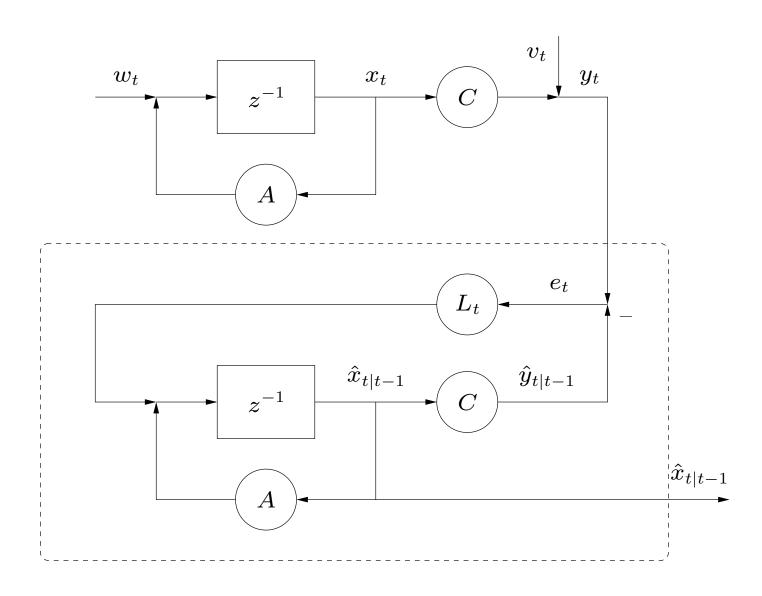
$$\hat{x}_{t+1|t} = A\hat{x}_{t|t-1} + A\Sigma_{t|t-1}C^{T}(C\Sigma_{t|t-1}C^{T} + V)^{-1}(y_{t} - C\hat{x}_{t|t-1})$$

$$= A\hat{x}_{t|t-1} + L_{t}(y_{t} - \hat{y}_{t|t-1})$$

where $L_t = A\Sigma_{t|t-1}C^T(C\Sigma_{t|t-1}C^T + V)^{-1}$ is the observer gain

- $\hat{y}_{t|t-1}$ is our output prediction, *i.e.*, our estimate of y_t based on y_0, \dots, y_{t-1}
- $e_t = y_t \hat{y}_{t|t-1}$ is our output prediction error
- $A\hat{x}_{t|t-1}$ is our prediction of x_{t+1} based on y_0, \ldots, y_{t-1}
- our estimate of x_{t+1} is the prediction based on y_0, \ldots, y_{t-1} , plus a linear function of the output prediction error

Kalman filter block diagram



The Kalman filter

Steady-state Kalman filter

as in LQR, Riccati recursion for $\Sigma_{t|t-1}$ converges to steady-state value $\hat{\Sigma}$, provided (C,A) is observable and (A,W) is controllable

 $\hat{\Sigma}$ gives steady-state error covariance for estimating x_{t+1} given y_0, \dots, y_t note that state prediction error covariance converges, even if system is unstable

 $\hat{\Sigma}$ satisfies ARE

$$\hat{\Sigma} = A\hat{\Sigma}A^T + W - A\hat{\Sigma}C^T(C\hat{\Sigma}C^T + V)^{-1}C\hat{\Sigma}A^T$$

(which can be solved directly)

steady-state filter is a time-invariant observer:

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t-1} + L(y_t - \hat{y}_{t|t-1}), \qquad \hat{y}_{t|t-1} = C\hat{x}_{t|t-1}$$

where
$$L = A\hat{\Sigma}C^T(C\hat{\Sigma}C^T + V)^{-1}$$

define state estimation error $\tilde{x}_{t|t-1} = x_t - \hat{x}_{t|t-1}$, so

$$y_t - \hat{y}_{t|t-1} = Cx_t + v_t - C\hat{x}_{t|t-1} = C\tilde{x}_{t|t-1} + v_t$$

and

$$\tilde{x}_{t+1|t} = x_{t+1} - \hat{x}_{t+1|t}
= Ax_t + w_t - A\hat{x}_{t|t-1} - L(C\tilde{x}_{t|t-1} + v_t)
= (A - LC)\tilde{x}_{t|t-1} + w_t - Lv_t$$

thus, the estimation error propagates according to a linear system, with closed-loop dynamics A-LC, driven by the process w_t-LCv_t , which is IID zero mean and covariance $W+LVL^T$

provided A,W is controllable and C,A is observable, A-LC is stable

The Kalman filter 8–24

Example

system is

$$x_{t+1} = Ax_t + w_t, \qquad y_t = Cx_t + v_t$$

with $x_t \in \mathbf{R}^6$, $y_t \in \mathbf{R}$

we'll take
$$\mathbf{E} x_0 = 0$$
, $\mathbf{E} x_0 x_0^T = \Sigma_0 = 5^2 I$; $W = (1.5)^2 I$, $V = 1$

eigenvalues of A:

$$0.9973 \pm 0.0730j$$
,

$$0.9973 \pm 0.0730j$$
, $0.9995 \pm 0.0324j$, $0.9941 \pm 0.1081j$

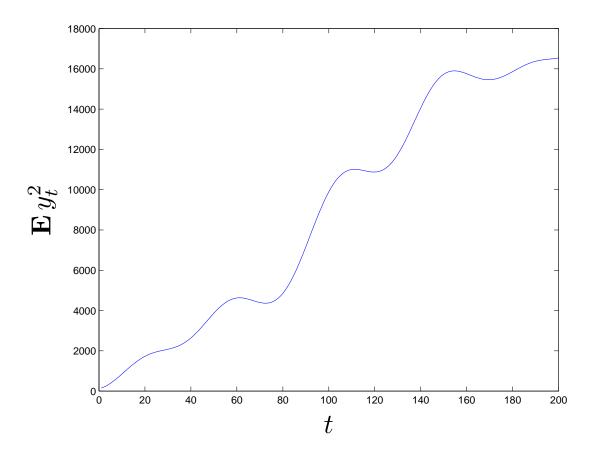
$$0.9941 \pm 0.1081j$$

(which have magnitude one)

goal: predict y_{t+1} based on y_0, \ldots, y_t

first let's find variance of y_t versus t, using Lyapunov recursion

$$\mathbf{E} y_t^2 = C\Sigma_x(t)C^T + V, \qquad \Sigma_x(t+1) = A\Sigma_x(t)A^T + W, \qquad \Sigma_x(0) = \Sigma_0$$

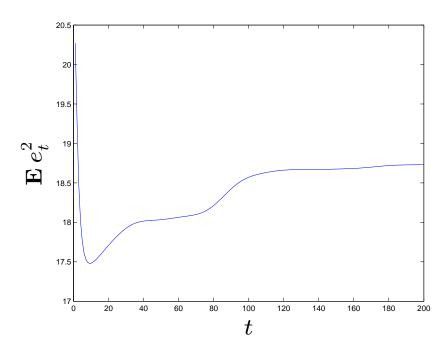


now, let's plot the prediction error variance versus t,

$$\mathbf{E} e_t^2 = \mathbf{E} (\hat{y}_{t|t-1} - y_t)^2 = C \Sigma_{t|t-1} C^T + V,$$

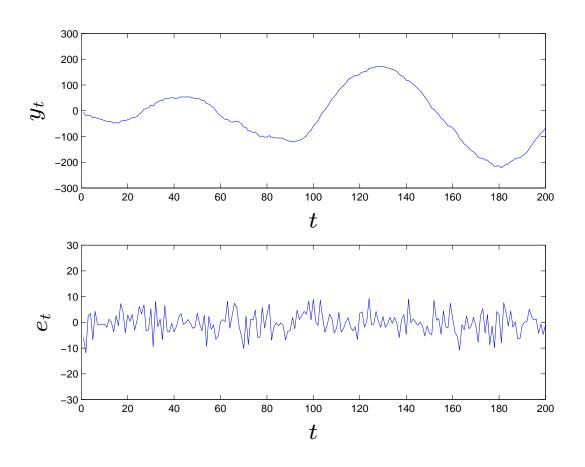
where $\Sigma_{t|t-1}$ satisfies Riccati recursion, initialized by $\Sigma_{-1|-2} = \Sigma_0$,

$$\Sigma_{t+1|t} = A\Sigma_{t|t-1}A^{T} + W - A\Sigma_{t|t-1}C^{T}(C\Sigma_{t|t-1}C^{T} + V)^{-1}C\Sigma_{t|t-1}A^{T}$$



prediction error variance converges to steady-state value 18.7

now let's try the Kalman filter on a realization y_t top plot shows y_t ; bottom plot shows e_t (on different vertical scale)



The Kalman filter 8–28