Lecture 1

Linear quadratic regulator: Discrete-time finite horizon

- LQR cost function
- multi-objective interpretation
- LQR via least-squares
- dynamic programming solution
- steady-state LQR control
- extensions: time-varying systems, tracking problems

LQR problem: background

discrete-time system $x_{t+1}=A x_{t}+B u_{t}, x_{0}=x^{\text {init }}$
problem: choose u_{0}, u_{1}, \ldots so that

- x_{0}, x_{1}, \ldots is 'small', i.e., we get good regulation or control
- u_{0}, u_{1}, \ldots is 'small', i.e., using small input effort or actuator authority
- we'll define 'small' soon
- these are usually competing objectives, e.g., a large u can drive x to zero fast
linear quadratic regulator (LQR) theory addresses this question

LQR cost function

we define quadratic cost function

$$
J(U)=\sum_{\tau=0}^{N-1}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)+x_{N}^{T} Q_{f} x_{N}
$$

where $U=\left(u_{0}, \ldots, u_{N-1}\right)$ and

$$
Q=Q^{T} \geq 0, \quad Q_{f}=Q_{f}^{T} \geq 0, \quad R=R^{T}>0
$$

are given state cost, final state cost, and input cost matrices

- N is called time horizon (we'll consider $N=\infty$ later)
- first term measures state deviation
- second term measures input size or actuator authority
- last term measures final state deviation
- Q, R set relative weights of state deviation and input usage
- $R>0$ means any (nonzero) input adds to cost J

LQR problem: find $u_{0}^{\mathrm{lqr}}, \ldots, u_{N-1}^{\mathrm{lqr}}$ that minimizes $J(U)$

Comparison to least-norm input

c.f. least-norm input that steers x to $x_{N}=0$:

- no cost attached to x_{0}, \ldots, x_{N-1}
- x_{N} must be exactly zero
we can approximate the least-norm input by taking

$$
R=I, \quad Q=0, \quad Q_{f} \text { large, e.g., } Q_{f}=10^{8} I
$$

Multi-objective interpretation

common form for Q and R :

$$
R=\rho I, \quad Q=Q_{f}=C^{T} C
$$

where $C \in \mathbf{R}^{p \times n}$ and $\rho \in \mathbf{R}, \rho>0$
cost is then

$$
J(U)=\sum_{\tau=0}^{N}\left\|y_{\tau}\right\|^{2}+\rho \sum_{\tau=0}^{N-1}\left\|u_{\tau}\right\|^{2}
$$

where $y=C x$
here $\sqrt{\rho}$ gives relative weighting of output norm and input norm

Input and output objectives

fix $x_{0}=x^{\text {init }}$ and horizon N; for any input $U=\left(u_{0}, \ldots, u_{N-1}\right)$ define

- input cost $J_{\text {in }}(U)=\sum_{\tau=0}^{N-1}\left\|u_{\tau}\right\|^{2}$
- output cost $J_{\text {out }}(U)=\sum_{\tau=0}^{N}\left\|y_{\tau}\right\|^{2}$
these are (competing) objectives; we want both small

LQR quadratic cost is $J_{\text {out }}+\rho J_{\text {in }}$
plot $\left(J_{\text {in }}, J_{\text {out }}\right)$ for all possible U :

- shaded area shows $\left(J_{\text {in }}, J_{\text {out }}\right)$ achieved by some U
- clear area shows $\left(J_{\text {in }}, J_{\text {out }}\right)$ not achieved by any U
three sample inputs U_{1}, U_{2}, and U_{3} are shown
- U_{3} is worse than U_{2} on both counts ($J_{\text {in }}$ and $J_{\text {out }}$)
- U_{1} is better than U_{2} in $J_{\text {in }}$, but worse in $J_{\text {out }}$
interpretation of LQR quadratic cost:

$$
J=J_{\text {out }}+\rho J_{\mathrm{in}}=\mathrm{constant}
$$

corresponds to a line with slope $-\rho$ on $\left(J_{\text {in }}, J_{\text {out }}\right)$ plot

- LQR optimal input is at boundary of shaded region, just touching line of smallest possible J
- u_{2} is LQR optimal for ρ shown
- by varying ρ from 0 to $+\infty$, can sweep out optimal tradeoff curve

LQR via least-squares

LQR can be formulated (and solved) as a least-squares problem
$X=\left(x_{0}, \ldots x_{N}\right)$ is a linear function of x_{0} and $U=\left(u_{0}, \ldots, u_{N-1}\right)$:

$$
\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \cdots & & \\
B & 0 & \cdots & \\
A B & B & 0 & \cdots \\
\vdots & \vdots & & \\
A^{N-1} B & A^{N-2} B & \cdots & B
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
\vdots \\
u_{N-1}
\end{array}\right]+\left[\begin{array}{c}
I \\
A \\
\vdots \\
A^{N}
\end{array}\right] x_{0}
$$

express as $X=G U+H x_{0}$, where $G \in \mathbf{R}^{N n \times N m}, H \in \mathbf{R}^{N n \times n}$
express LQR cost as

$$
\begin{aligned}
J(U) & =\left\|\operatorname{diag}\left(Q^{1 / 2}, \ldots, Q^{1 / 2}, Q_{f}^{1 / 2}\right)\left(G U+H x_{0}\right)\right\|^{2} \\
& +\left\|\operatorname{diag}\left(R^{1 / 2}, \ldots, R^{1 / 2}\right) U\right\|^{2}
\end{aligned}
$$

this is just a (big) least-squares problem
this solution method requires forming and solving a least-squares problem with size $N(n+m) \times N m$
using a naive method (e.g., QR factorization), cost is $O\left(N^{3} n m^{2}\right)$

Dynamic programming solution

- gives an efficient, recursive method to solve LQR least-squares problem; cost is $O\left(N n^{3}\right)$
- (but in fact, a less naive approach to solve the LQR least-squares problem will have the same complexity)
- useful and important idea on its own
- same ideas can be used for many other problems

Value function

for $t=0, \ldots, N$ define the value function $V_{t}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
V_{t}(z)=\min _{u_{t}, \ldots, u_{N-1}} \sum_{\tau=t}^{N-1}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)+x_{N}^{T} Q_{f} x_{N}
$$

subject to $x_{t}=z, x_{\tau+1}=A x_{\tau}+B u_{\tau}, \tau=t, \ldots, T$

- $V_{t}(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $V_{0}\left(x_{0}\right)$ is \min LQR cost (from state x_{0} at time 0)
we will find that
- V_{t} is quadratic, i.e., $V_{t}(z)=z^{T} P_{t} z$, where $P_{t}=P_{t}^{T} \geq 0$
- P_{t} can be found recursively, working backward from $t=N$
- the LQR optimal u is easily expressed in terms of P_{t}
cost-to-go with no time left is just final state cost:

$$
V_{N}(z)=z^{T} Q_{f} z
$$

thus we have $P_{N}=Q_{f}$

Dynamic programming principle

- now suppose we know $V_{t+1}(z)$
- what is the optimal choice for u_{t} ?
- choice of u_{t} affects
- current cost incurred (through $u_{t}^{T} R u_{t}$)
- where we land, x_{t+1} (hence, the min-cost-to-go from x_{t+1})
- dynamic programming (DP) principle:

$$
V_{t}(z)=\min _{w}\left(z^{T} Q z+w^{T} R w+V_{t+1}(A z+B w)\right)
$$

- $z^{T} Q z+w^{T} R w$ is cost incurred at time t if $u_{t}=w$
- $V_{t+1}(A z+B w)$ is min cost-to-go from where you land at $t+1$
- follows from fact that we can minimize in any order:

$$
\min _{w_{1}, \ldots, w_{k}} f\left(w_{1}, \ldots, w_{k}\right)=\min _{w_{1}} \underbrace{\left(\min _{w_{2}, \ldots, w_{k}} f\left(w_{1}, \ldots, w_{k}\right)\right)}_{\text {a fct of } w_{1}}
$$

in words:
\min cost-to-go from where you are $=$ min over (current cost incurred $+\min$ cost-to-go from where you land)

Example: path optimization

- edges show possible flights; each has some cost
- want to find min cost route or path from SF to NY

dynamic programming (DP):

- $V(i)$ is min cost from airport i to NY , over all possible paths
- to find min cost from city i to NY: minimize sum of flight cost plus min cost to NY from where you land, over all flights out of city i (gives optimal flight out of city i on way to NY)
- if we can find $V(i)$ for each i, we can find min cost path from any city to NY
- DP principle: $V(i)=\min _{j}\left(c_{j i}+V(j)\right)$, where $c_{j i}$ is cost of flight from i to j, and minimum is over all possible flights out of i

HJ equation for LQR

$$
V_{t}(z)=z^{T} Q z+\min _{w}\left(w^{T} R w+V_{t+1}(A z+B w)\right)
$$

- called DP, Bellman, or Hamilton-Jacobi equation
- gives V_{t} recursively, in terms of V_{t+1}
- any minimizing w gives optimal u_{t} :

$$
u_{t}^{\mathrm{lqq}}=\underset{w}{\operatorname{argmin}}\left(w^{T} R w+V_{t+1}(A z+B w)\right)
$$

- let's assume that $V_{t+1}(z)=z^{T} P_{t+1} z$, with $P_{t+1}=P_{t+1}^{T} \geq 0$
- we'll show that V_{t} has the same form
- by DP,

$$
V_{t}(z)=z^{T} Q z+\min _{w}\left(w^{T} R w+(A z+B w)^{T} P_{t+1}(A z+B w)\right)
$$

- can solve by setting derivative w.r.t. w to zero:

$$
2 w^{T} R+2(A z+B w)^{T} P_{t+1} B=0
$$

- hence optimal input is

$$
w^{*}=-\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A z
$$

- and so (after some ugly algebra)

$$
\begin{aligned}
V_{t}(z) & =z^{T} Q z+w^{* T} R w^{*}+\left(A z+B w^{*}\right)^{T} P_{t+1}\left(A z+B w^{*}\right) \\
& =z^{T}\left(Q+A^{T} P_{t+1} A-A^{T} P_{t+1} B\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A\right) z \\
& =z^{T} P_{t} z
\end{aligned}
$$

where

$$
P_{t}=Q+A^{T} P_{t+1} A-A^{T} P_{t+1} B\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A
$$

- easy to show $P_{t}=P_{t}^{T} \geq 0$

Summary of LQR solution via DP

1. set $P_{N}:=Q_{f}$
2. for $t=N, \ldots, 1$,

$$
P_{t-1}:=Q+A^{T} P_{t} A-A^{T} P_{t} B\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t} A
$$

3. for $t=0, \ldots, N-1$, define $K_{t}:=-\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A$
4. for $t=0, \ldots, N-1$, optimal u is given by $u_{t}^{\text {lqr }}=K_{t} x_{t}$

- optimal u is a linear function of the state (called linear state feedback)
- recursion for min cost-to-go runs backward in time

LQR example

2-state, single-input, single-output system

$$
x_{t+1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] x_{t}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{t}, \quad y_{t}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x_{t}
$$

with initial state $x_{0}=(1,0)$, horizon $N=20$, and weight matrices

$$
Q=Q_{f}=C^{T} C, \quad R=\rho I
$$

optimal trade-off curve of $J_{\text {in }}$ vs. $J_{\text {out }}$:

circles show LQR solutions with $\rho=0.3, \rho=10$
$u \& y$ for $\rho=0.3, \rho=10$:

optimal input has form $u_{t}=K_{t} x_{t}$, where $K_{t} \in \mathbf{R}^{1 \times 2}$
state feedback gains vs. t for various values of Q_{f} (note convergence):

Steady-state regulator

usually P_{t} rapidly converges as t decreases below N
limit or steady-state value P_{ss} satisfies

$$
P_{\mathrm{ss}}=Q+A^{T} P_{\mathrm{ss}} A-A^{T} P_{\mathrm{ss}} B\left(R+B^{T} P_{\mathrm{ss}} B\right)^{-1} B^{T} P_{\mathrm{ss}} A
$$

which is called the (DT) algebraic Riccati equation (ARE)

- P_{ss} can be found by iterating the Riccati recursion, or by direct methods
- for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

$$
u_{t}=K_{\mathrm{ss}} x_{t}, \quad K_{\mathrm{ss}}=-\left(R+B^{T} P_{\mathrm{ss}} B\right)^{-1} B^{T} P_{\mathrm{ss}} A
$$

(very widely used in practice; more on this later)

Time-varying systems

LQR is readily extended to handle time-varying systems

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}
$$

and time-varying cost matrices

$$
J=\sum_{\tau=0}^{N-1}\left(x_{\tau}^{T} Q_{\tau} x_{\tau}+u_{\tau}^{T} R_{\tau} u_{\tau}\right)+x_{N}^{T} Q_{f} x_{N}
$$

(so Q_{f} is really just Q_{N})

DP solution is readily extended, but (of course) there need not be a steady-state solution

Tracking problems

we consider LQR cost with state and input offsets:

$$
\begin{aligned}
J & =\sum_{\tau=0}^{N-1}\left(x_{\tau}-\bar{x}_{\tau}\right)^{T} Q\left(x_{\tau}-\bar{x}_{\tau}\right) \\
& +\sum_{\tau=0}^{N-1}\left(u_{\tau}-\bar{u}_{\tau}\right)^{T} R\left(u_{\tau}-\bar{u}_{\tau}\right)
\end{aligned}
$$

(we drop the final state term for simplicity)
here, \bar{x}_{τ} and \bar{u}_{τ} are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems

Gauss-Newton LQR

nonlinear dynamical system: $x_{t+1}=f\left(x_{t}, u_{t}\right), x_{0}=x^{\text {init }}$
objective is

$$
J(U)=\sum_{\tau=0}^{N-1}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)+x_{N}^{T} Q_{f} x_{N}
$$

where $Q=Q^{T} \geq 0, Q_{f}=Q_{f}^{T} \geq 0, R=R^{T}>0$
start with a guess for U, and alternate between:

- linearize around current trajectory
- solve associated LQR (tracking) problem
sometimes converges, sometimes to the globally optimal U
some more detail:
- let u denote current iterate or guess
- simulate system to find x, using $x_{t+1}=f\left(x_{t}, u_{t}\right)$
- linearize around this trajectory: $\delta x_{t+1}=A_{t} \delta x_{t}+B_{t} \delta u_{t}$

$$
A_{t}=D_{x} f\left(x_{t}, u_{t}\right) \quad B_{t}=D_{u} f\left(x_{t}, u_{t}\right)
$$

- solve time-varying LQR tracking problem with cost

$$
\begin{aligned}
J & =\sum_{\tau=0}^{N-1}\left(x_{\tau}+\delta x_{\tau}\right)^{T} Q\left(x_{\tau}+\delta x_{\tau}\right) \\
& +\sum_{\tau=0}^{N-1}\left(u_{\tau}+\delta u_{\tau}\right)^{T} R\left(u_{\tau}+\delta u_{\tau}\right)
\end{aligned}
$$

- for next iteration, set $u_{t}:=u_{t}+\delta u_{t}$

