EE363 Winter 2008-09

Lecture 1

Linear quadratic regulator: Discrete-time finite horizon

- LQR cost function
- multi-objective interpretation
- LQR via least-squares
- dynamic programming solution
- steady-state LQR control
- extensions: time-varying systems, tracking problems

LQR problem: background

discrete-time system $x_{t+1} = Ax_t + Bu_t$, $x_0 = x^{\text{init}}$ problem: choose u_0, u_1, \ldots so that

- x_0, x_1, \ldots is 'small', *i.e.*, we get good *regulation* or *control*
- u_0, u_1, \ldots is 'small', *i.e.*, using small *input effort* or *actuator authority*
- we'll define 'small' soon
- ullet these are usually competing objectives, e.g., a large u can drive x to zero fast

linear quadratic regulator (LQR) theory addresses this question

LQR cost function

we define quadratic cost function

$$J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

where $U = (u_0, \dots, u_{N-1})$ and

$$Q = Q^T \ge 0, \qquad Q_f = Q_f^T \ge 0, \qquad R = R^T > 0$$

are given state cost, final state cost, and input cost matrices

- N is called *time horizon* (we'll consider $N=\infty$ later)
- first term measures state deviation
- second term measures *input size* or *actuator authority*
- last term measures final state deviation
- Q, R set relative weights of state deviation and input usage
- R>0 means any (nonzero) input adds to cost J

LQR problem: find $u_0^{\mathrm{lqr}}, \dots, u_{N-1}^{\mathrm{lqr}}$ that minimizes J(U)

Comparison to least-norm input

c.f. least-norm input that steers x to $x_N = 0$:

- no cost attached to x_0, \ldots, x_{N-1}
- x_N must be exactly zero

we can approximate the least-norm input by taking

$$R = I,$$
 $Q = 0,$ Q_f large, $e.g.$, $Q_f = 10^8 I$

Multi-objective interpretation

common form for Q and R:

$$R = \rho I, \qquad Q = Q_f = C^T C$$

where $C \in \mathbf{R}^{p \times n}$ and $\rho \in \mathbf{R}$, $\rho > 0$

cost is then

$$J(U) = \sum_{\tau=0}^{N} ||y_{\tau}||^{2} + \rho \sum_{\tau=0}^{N-1} ||u_{\tau}||^{2}$$

where y = Cx

here $\sqrt{\rho}$ gives relative weighting of output norm and input norm

Input and output objectives

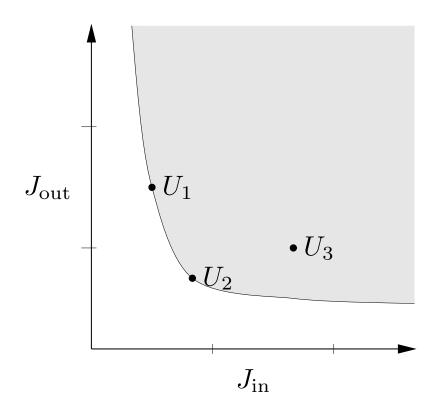
fix $x_0 = x^{\text{init}}$ and horizon N; for any input $U = (u_0, \dots, u_{N-1})$ define

- input cost $J_{\mathrm{in}}(U) = \sum_{\tau=0}^{N-1} \|u_{\tau}\|^2$
- output cost $J_{\mathrm{out}}(U) = \sum_{\tau=0}^{N} \|y_{\tau}\|^2$

these are (competing) objectives; we want both small

LQR quadratic cost is $J_{\mathrm{out}} + \rho J_{\mathrm{in}}$

plot $(J_{\rm in}, J_{\rm out})$ for all possible U:



- ullet shaded area shows $(J_{\mathrm{in}},J_{\mathrm{out}})$ achieved by some U
- ullet clear area shows $(J_{
 m in},J_{
 m out})$ not achieved by any U

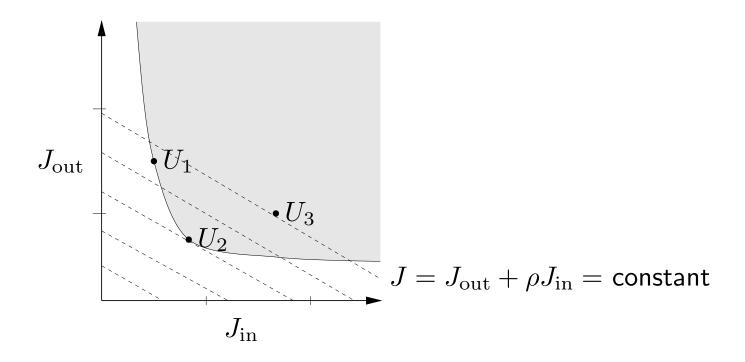
three sample inputs U_1 , U_2 , and U_3 are shown

- U_3 is worse than U_2 on both counts $(J_{\rm in} \text{ and } J_{\rm out})$
- ullet U_1 is better than U_2 in J_{in} , but worse in J_{out}

interpretation of LQR quadratic cost:

$$J = J_{\mathrm{out}} + \rho J_{\mathrm{in}} = \text{constant}$$

corresponds to a line with slope $-\rho$ on $(J_{\mathrm{in}},J_{\mathrm{out}})$ plot



- \bullet LQR optimal input is at boundary of shaded region, just touching line of smallest possible J
- u_2 is LQR optimal for ρ shown
- ullet by varying ho from 0 to $+\infty$, can sweep out optimal tradeoff curve

LQR via least-squares

LQR can be formulated (and solved) as a least-squares problem

 $X=(x_0,\ldots x_N)$ is a linear function of x_0 and $U=(u_0,\ldots,u_{N-1})$:

$$\begin{bmatrix} x_0 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} 0 & \cdots & & & \\ B & 0 & \cdots & & \\ AB & B & 0 & \cdots & \\ \vdots & \vdots & \vdots & & \\ A^{N-1}B & A^{N-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \end{bmatrix} + \begin{bmatrix} I \\ A \\ \vdots \\ A^N \end{bmatrix} x_0$$

express as $X = GU + Hx_0$, where $G \in \mathbf{R}^{Nn \times Nm}$, $H \in \mathbf{R}^{Nn \times n}$

express LQR cost as

$$J(U) = \left\| \operatorname{diag}(Q^{1/2}, \dots, Q^{1/2}, Q_f^{1/2}) (GU + Hx_0) \right\|^2 + \left\| \operatorname{diag}(R^{1/2}, \dots, R^{1/2}) U \right\|^2$$

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem with size $N(n+m) \times Nm$

using a naive method (e.g., QR factorization), cost is $O(N^3nm^2)$

Dynamic programming solution

- ullet gives an efficient, recursive method to solve LQR least-squares problem; cost is $O(Nn^3)$
- (but in fact, a less naive approach to solve the LQR least-squares problem will have the same complexity)
- useful and important idea on its own
- same ideas can be used for many other problems

Value function

for t = 0, ..., N define the value function $V_t : \mathbf{R}^n \to \mathbf{R}$ by

$$V_t(z) = \min_{u_t, \dots, u_{N-1}} \sum_{\tau=t}^{N-1} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right) + x_N^T Q_f x_N$$

subject to $x_t=z$, $x_{\tau+1}=Ax_{\tau}+Bu_{\tau}$, $\tau=t,\ldots,T$

- ullet $V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $V_0(x_0)$ is min LQR cost (from state x_0 at time 0)

we will find that

- V_t is quadratic, i.e., $V_t(z) = z^T P_t z$, where $P_t = P_t^T \ge 0$
- ullet P_t can be found recursively, working backward from t=N
- ullet the LQR optimal u is easily expressed in terms of P_t

cost-to-go with no time left is just final state cost:

$$V_N(z) = z^T Q_f z$$

thus we have $P_N = Q_f$

Dynamic programming principle

- now suppose we know $V_{t+1}(z)$
- what is the optimal choice for u_t ?
- ullet choice of u_t affects
 - current cost incurred (through $u_t^T R u_t$)
 - where we land, x_{t+1} (hence, the min-cost-to-go from x_{t+1})
- dynamic programming (DP) principle:

$$V_t(z) = \min_{w} \left(z^T Q z + w^T R w + V_{t+1} (Az + Bw) \right)$$

- $z^TQz + w^TRw$ is cost incurred at time t if $u_t = w$
- $V_{t+1}(Az+Bw)$ is min cost-to-go from where you land at t+1

• follows from fact that we can minimize in any order:

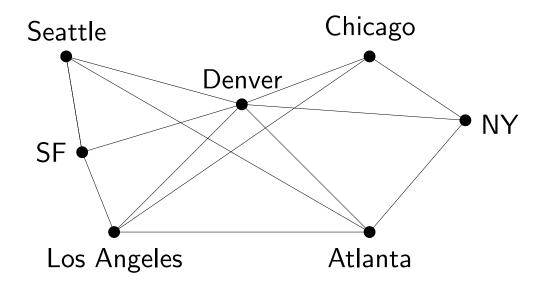
$$\min_{w_1,\dots,w_k} f(w_1,\dots,w_k) = \min_{w_1} \underbrace{\left(\min_{w_2,\dots,w_k} f(w_1,\dots,w_k)\right)}_{\text{a fct of } w_1}$$

in words:

min cost-to-go from where you are = min over (current cost incurred + min cost-to-go from where you land)

Example: path optimization

- edges show possible flights; each has some cost
- want to find min cost route or path from SF to NY



dynamic programming (DP):

- \bullet V(i) is min cost from airport i to NY, over all possible paths
- to find min cost from city i to NY: minimize sum of flight cost plus min cost to NY from where you land, over all flights out of city i (gives optimal flight out of city i on way to NY)
- ullet if we can find V(i) for each i, we can find min cost path from any city to NY
- DP principle: $V(i) = \min_j (c_{ji} + V(j))$, where c_{ji} is cost of flight from i to j, and minimum is over all possible flights out of i

HJ equation for LQR

$$V_t(z) = z^T Q z + \min_{w} \left(w^T R w + V_{t+1} (Az + Bw) \right)$$

- called DP, Bellman, or Hamilton-Jacobi equation
- ullet gives V_t recursively, in terms of V_{t+1}
- any minimizing w gives optimal u_t :

$$u_t^{\text{lqr}} = \underset{w}{\operatorname{argmin}} \left(w^T R w + V_{t+1} (Az + Bw) \right)$$

- ullet let's assume that $V_{t+1}(z)=z^TP_{t+1}z$, with $P_{t+1}=P_{t+1}^T\geq 0$
- ullet we'll show that V_t has the same form
- by DP,

$$V_t(z) = z^T Q z + \min_{w} \left(w^T R w + (Az + Bw)^T P_{t+1} (Az + Bw) \right)$$

ullet can solve by setting derivative w.r.t. w to zero:

$$2w^{T}R + 2(Az + Bw)^{T}P_{t+1}B = 0$$

hence optimal input is

$$w^* = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A z$$

• and so (after some ugly algebra)

$$V_{t}(z) = z^{T}Qz + w^{*T}Rw^{*} + (Az + Bw^{*})^{T}P_{t+1}(Az + Bw^{*})$$

$$= z^{T}(Q + A^{T}P_{t+1}A - A^{T}P_{t+1}B(R + B^{T}P_{t+1}B)^{-1}B^{T}P_{t+1}A)z$$

$$= z^{T}P_{t}z$$

where

$$P_{t} = Q + A^{T} P_{t+1} A - A^{T} P_{t+1} B (R + B^{T} P_{t+1} B)^{-1} B^{T} P_{t+1} A$$

 $\bullet \ \ \text{easy to show} \ P_t = P_t^T \geq 0$

Summary of LQR solution via DP

1. set
$$P_N := Q_f$$

2. for t = N, ..., 1,

$$P_{t-1} := Q + A^T P_t A - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A$$

3. for
$$t = 0, ..., N - 1$$
, define $K_t := -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$

4. for $t=0,\ldots,N-1$, optimal u is given by $u_t^{\mathrm{lqr}}=K_tx_t$

- optimal u is a linear function of the state (called linear state feedback)
- recursion for min cost-to-go runs backward in time

LQR example

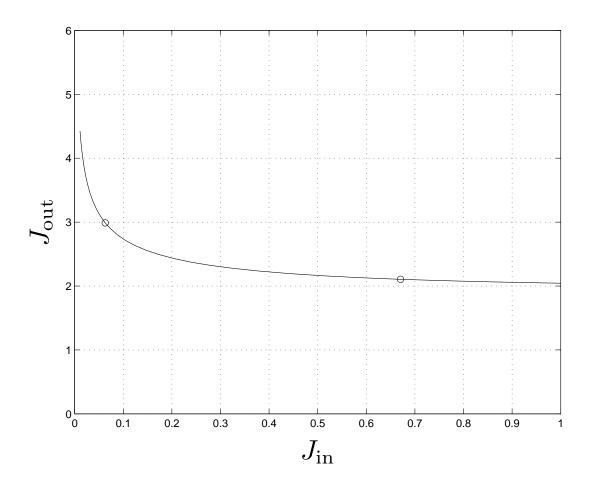
2-state, single-input, single-output system

$$x_{t+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_t, \qquad y_t = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t$$

with initial state $x_0 = (1,0)$, horizon N = 20, and weight matrices

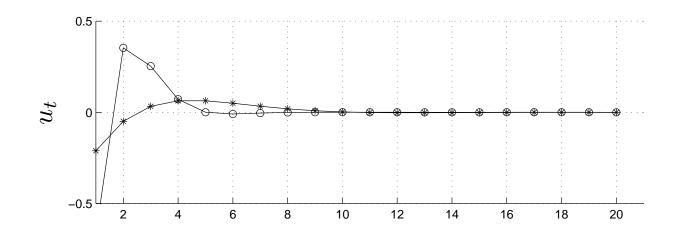
$$Q = Q_f = C^T C, \qquad R = \rho I$$

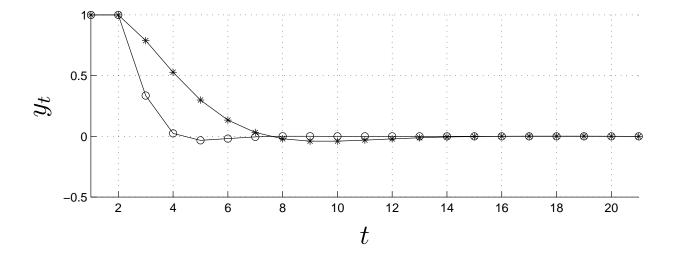
optimal trade-off curve of $J_{\rm in}$ vs. $J_{\rm out}$:



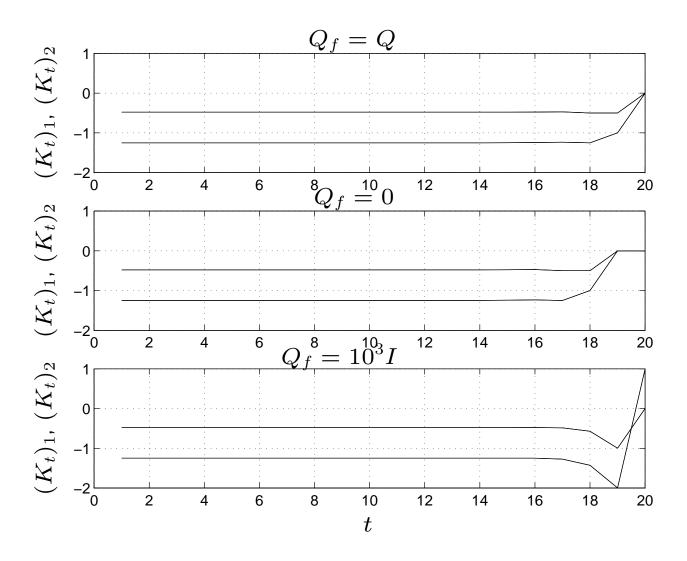
circles show LQR solutions with $\rho=0.3$, $\rho=10$

 $u \ \& \ y \ {\rm for} \ \rho = 0.3, \ \rho = 10:$





optimal input has form $u_t = K_t x_t$, where $K_t \in \mathbf{R}^{1 \times 2}$ state feedback gains vs. t for various values of Q_f (note convergence):



Steady-state regulator

usually P_t rapidly converges as t decreases below N limit or steady-state value P_{ss} satisfies

$$P_{\rm ss} = Q + A^T P_{\rm ss} A - A^T P_{\rm ss} B (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

which is called the (DT) algebraic Riccati equation (ARE)

- \bullet $P_{\rm ss}$ can be found by iterating the Riccati recursion, or by direct methods
- ullet for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

$$u_t = K_{ss}x_t, K_{ss} = -(R + B^T P_{ss}B)^{-1}B^T P_{ss}A$$

(very widely used in practice; more on this later)

Time-varying systems

LQR is readily extended to handle time-varying systems

$$x_{t+1} = A_t x_t + B_t u_t$$

and time-varying cost matrices

$$J = \sum_{\tau=0}^{N-1} \left(x_{\tau}^{T} Q_{\tau} x_{\tau} + u_{\tau}^{T} R_{\tau} u_{\tau} \right) + x_{N}^{T} Q_{f} x_{N}$$

(so Q_f is really just Q_N)

DP solution is readily extended, but (of course) there need not be a steady-state solution

Tracking problems

we consider LQR cost with state and input offsets:

$$J = \sum_{\tau=0}^{N-1} (x_{\tau} - \bar{x}_{\tau})^{T} Q(x_{\tau} - \bar{x}_{\tau})$$

$$+ \sum_{\tau=0}^{N-1} (u_{\tau} - \bar{u}_{\tau})^{T} R(u_{\tau} - \bar{u}_{\tau})$$

(we drop the final state term for simplicity)

here, $\bar{x}_{ au}$ and $\bar{u}_{ au}$ are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems

Gauss-Newton LQR

nonlinear dynamical system: $x_{t+1} = f(x_t, u_t)$, $x_0 = x^{\text{init}}$ objective is

$$J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau}) + x_{N}^{T} Q_{f} x_{N}$$

where $Q=Q^T\geq 0$, $Q_f=Q_f^T\geq 0$, $R=R^T>0$ start with a guess for U, and alternate between:

- linearize around current trajectory
- solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal \boldsymbol{U}

some more detail:

- let u denote current iterate or guess
- simulate system to find x, using $x_{t+1} = f(x_t, u_t)$
- linearize around this trajectory: $\delta x_{t+1} = A_t \delta x_t + B_t \delta u_t$

$$A_t = D_x f(x_t, u_t) \qquad B_t = D_u f(x_t, u_t)$$

• solve time-varying LQR tracking problem with cost

$$J = \sum_{\tau=0}^{N-1} (x_{\tau} + \delta x_{\tau})^{T} Q(x_{\tau} + \delta x_{\tau})$$

$$+ \sum_{\tau=0}^{N-1} (u_{\tau} + \delta u_{\tau})^{T} R(u_{\tau} + \delta u_{\tau})$$

• for next iteration, set $u_t := u_t + \delta u_t$