Lecture 3
 Infinite horizon linear quadratic regulator

- infinite horizon LQR problem
- dynamic programming solution
- receding horizon LQR control
- closed-loop system

Infinite horizon LQR problem

discrete-time system $x_{t+1}=A x_{t}+B u_{t}, x_{0}=x^{\text {init }}$
problem: choose u_{0}, u_{1}, \ldots to minimize

$$
J=\sum_{\tau=0}^{\infty}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)
$$

with given constant state and input weight matrices

$$
Q=Q^{T} \geq 0, \quad R=R^{T}>0
$$

. . . an infinite dimensional problem
problem: it's possible that $J=\infty$ for all input sequences u_{0}, \ldots

$$
x_{t+1}=2 x_{t}+0 u_{t}, \quad x^{\text {init }}=1
$$

let's assume (A, B) is controllable then for any $x^{\text {init }}$ there's an input sequence

$$
u_{0}, \ldots, u_{n-1}, 0,0, \ldots
$$

that steers x to zero at $t=n$, and keeps it there
for this $u, J<\infty$
and therefore, $\min _{u} J<\infty$ for any $x^{\text {init }}$

Dynamic programming solution

define value function $V: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
V(z)=\min _{u_{0}, \ldots} \sum_{\tau=0}^{\infty}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)
$$

subject to $x_{0}=z, x_{\tau+1}=A x_{\tau}+B u_{\tau}$

- $V(z)$ is the minimum LQR cost-to-go, starting from state z
- doesn't depend on time-to-go, which is always ∞; infinite horizon problem is shift invariant

Hamilton-Jacobi equation

fact: V is quadratic, i.e., $V(z)=z^{T} P z$, where $P=P^{T} \geq 0$ (can be argued directly from first principles)

HJ equation:

$$
V(z)=\min _{w}\left(z^{T} Q z+w^{T} R w+V(A z+B w)\right)
$$

or

$$
z^{T} P z=\min _{w}\left(z^{T} Q z+w^{T} R w+(A z+B w)^{T} P(A z+B w)\right)
$$

minimizing w is $w^{*}=-\left(R+B^{T} P B\right)^{-1} B^{T} P A z$
so HJ equation is

$$
\begin{aligned}
z^{T} P z & =z^{T} Q z+w^{* T} R w^{*}+\left(A z+B w^{*}\right)^{T} P\left(A z+B w^{*}\right) \\
& =z^{T}\left(Q+A^{T} P A-A^{T} P B\left(R+B^{T} P B\right)^{-1} B^{T} P A\right) z
\end{aligned}
$$

this must hold for all z, so we conclude that P satisfies the ARE

$$
P=Q+A^{T} P A-A^{T} P B\left(R+B^{T} P B\right)^{-1} B^{T} P A
$$

and the optimal input is constant state feedback $u_{t}=K x_{t}$,

$$
K=-\left(R+B^{T} P B\right)^{-1} B^{T} P A
$$

compared to finite-horizon LQR problem,

- value function and optimal state feedback gains are time-invariant
- we don't have a recursion to compute P; we only have the ARE
fact: the ARE has only one positive semidefinite solution P
i.e., ARE plus $P=P^{T} \geq 0$ uniquely characterizes value function consequence: the Riccati recursion

$$
P_{k+1}=Q+A^{T} P_{k} A-A^{T} P_{k} B\left(R+B^{T} P_{k} B\right)^{-1} B^{T} P_{k} A, \quad P_{1}=Q
$$

converges to the unique PSD solution of the ARE (when (A, B) controllable)
(later we'll see direct methods to solve ARE)
thus, infinite-horizon LQR optimal control is same as steady-state finite horizon optimal control

Receding-horizon LQR control

consider cost function

$$
J_{t}\left(u_{t}, \ldots, u_{t+T-1}\right)=\sum_{\tau=t}^{\tau=t+T}\left(x_{\tau}^{T} Q x_{\tau}+u_{\tau}^{T} R u_{\tau}\right)
$$

- T is called horizon
- same as infinite horizon LQR cost, truncated after T steps into future
if $\left(u_{t}^{*}, \ldots, u_{t+T-1}^{*}\right)$ minimizes J_{t}, u_{t}^{*} is called (T-step ahead) optimal receding horizon control
in words:
- at time t, find input sequence that minimizes T-step-ahead LQR cost, starting at current time
- then use only the first input
example: 1-step ahead receding horizon control find u_{t}, u_{t+1} that minimize

$$
J_{t}=x_{t}^{T} Q x_{t}+x_{t+1}^{T} Q x_{t+1}+u_{t}^{T} R u_{t}+u_{t+1}^{T} R u_{t+1}
$$

first term doesn't matter; optimal choice for u_{t+1} is 0 ; optimal u_{t} minimizes

$$
x_{t+1}^{T} Q x_{t+1}+u_{t}^{T} R u_{t}=\left(A x_{t}+B u_{t}\right)^{T} Q\left(A x_{t}+B u_{t}\right)+u_{t}^{T} R u_{t}
$$

thus, 1-step ahead receding horizon optimal input is

$$
u_{t}=-\left(R+B^{T} Q B\right)^{-1} B^{T} Q A x_{t}
$$

. . . a constant state feedback
in general, optimal T-step ahead LQR control is

$$
u_{t}=K_{T} x_{t}, \quad K_{T}=-\left(R+B^{T} P_{T} B\right)^{-1} B^{T} P_{T} A
$$

where

$$
P_{1}=Q, \quad P_{i+1}=Q+A^{T} P_{i} A-A^{T} P_{i} B\left(R+B^{T} P_{i} B\right)^{-1} B^{T} P_{i} A
$$

i.e.: same as the optimal finite horizon LQR control, $T-1$ steps before the horizon N

- a constant state feedback
- state feedback gain converges to infinite horizon optimal as horizon becomes long (assuming controllability)

Closed-loop system

suppose K is LQR-optimal state feedback gain

$$
x_{t+1}=A x_{t}+B u_{t}=(A+B K) x_{t}
$$

is called closed-loop system
($x_{t+1}=A x_{t}$ is called open-loop system)
is closed-loop system stable? consider

$$
x_{t+1}=2 x_{t}+u_{t}, \quad Q=0, \quad R=1
$$

optimal control is $u_{t}=0 x_{t}$, i.e., closed-loop system is unstable
fact: if (Q, A) observable and (A, B) controllable, then closed-loop system is stable

