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Abstract—The Gaussian multiple-input multiple-output
(MIMO) broadcast channel (BC) is considered. The dirty-paper
coding (DPC) rate region is shown to coincide with the capacity re-
gion. To that end, a new notion of an enhanced broadcast channel
is introduced and is used jointly with the entropy power inequality,
to show that a superposition of Gaussian codes is optimal for the
degraded vector broadcast channel and that DPC is optimal
for the nondegraded case. Furthermore, the capacity region is
characterized under a wide range of input constraints, accounting,
as special cases, for the total power and the per-antenna power
constraints.

Index Terms—Broadcast channel, capacity region, dirty-paper
coding (DPC), enhanced channel, entropy power inequality,
Minkowski’s inequality, multiple-antenna.

I. INTRODUCTION

WE consider a Gaussian multiple-input multiple-output
(MIMO) broadcast channel (BC) and find the capacity

region of this channel. The transmitter is required to send in-
dependent messages to receivers. We assume that the trans-
mitter has transmit antennas and user has

receive antennas. Initially, we assume that there is an average
total power limitation at the transmitter. However, as will be
made clear in the following section, our capacity results can be
easily extended to a much broader set of input constraints and in
general, we can consider any input constraint such that the input
covariance matrix belongs to a compact set of positive semidef-
inite matrices. The Gaussian BC is an additive noise channel
and each time sample can be represented using the following
expression:

(1)

where
• is a real input vector of size . Under an average

total power limitation at the transmitter, we require that
. Under an input covariance constraint, we

will require that for some (where
, and denote partial ordering between symmetric
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matrices where means that is a positive
semidefinite matrix).

• is a real output vector, received by user
. This is a vector of size (the vec-

tors are not necessarily of the same size).
• is a fixed, real gain matrix imposed on user . This is a

matrix of size . The gain matrices are fixed and are
perfectly known at the transmitter and at all receivers.

• is a real Gaussian random vector with zero mean and
a covariance matrix . No additional
structure is imposed on or , except that must be
strictly positive definite, for .

We shall refer to the channel in (1) as the General MIMO BC
(GMBC). Note that complex MIMO BCs can be easily accom-
modated by representing all complex vectors and matrices using
real vectors and matrices having twice and four times (for ma-
trices) the number of elements, corresponding to real and imag-
inary entries.

In this paper, we find the capacity region of the BC in expres-
sion (1) under various input constraints. In particular, we will
consider the average total power constraint and the input covari-
ance constraint. This model and our results are quite relevant to
many applications in wireless communications such as cellular
systems [17], [18], [23].

In general, the capacity region of the BC is still unknown.
There is a single-letter expression for an achievable rate re-
gion due to Marton [15], but it is unknown whether it coin-
cides with the capacity region. Nevertheless, for some special
cases, a single-letter formula for the capacity region does exist
[9]–[11], [14] and coincides with the Marton region [15]. One
such case is the degraded BC (see [10, pp. 418–428]) where
the channel input and outputs form a Markov chain. Since the
capacity region of the BC depends only on its conditional mar-
ginal distributions (see [10, p. 422]), it turns out that when
the BC defined by (1) is scalar ,
it is a degraded BC. Furthermore, it was shown by Bergmans
[1] that for the scalar Gaussian BC, using a superposition of
random Gaussian codes is optimal. Interestingly, the optimality
of Gaussian coding for this case was not deduced directly from
the informational formula, as the optimization over all input dis-
tributions is not trivial. Instead, the entropy power inequality
(EPI) [1], [3] is used. Unfortunately, in general, the channel
given by expression (1) is not degraded. To make matters worse,
even when this channel is degraded but not scalar, Bergmans’
proof does not directly extend to the vector case. In Section III,
we recount Bermans’ proof for the vector channel and show
where the extension to the degraded vector Gaussian BC fails.
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Recent years have seen intensive work on the Gaussian
MIMO BC. Caire and Shamai [7] were among the first to pay
attention to this channel and were the first to suggest using
dirty-paper coding (DPC) for transmitting over this channel.
DPC is based on Costa’s [8], [12], [28] results for coding
for a channel with both additive Gaussian noise and additive
Gaussian interference, where the interference is noncausally
known at the transmitter but not at the receiver. Costa observed
that under an input power constraint, the effect of the inter-
ference can be completely canceled out. Using this coding
technique, each user can precode his own information, based
on the signals of the users following it [7], [20], [22], [27]
(for some arbitrary ordering of the users) and treating their
respective signals as noncausally known interference.

Caire and Shamai [7] investigated a two-user MIMO BC with
an arbitrary number of antennas at the transmitter and one an-
tenna at each of the receivers. For that channel, it was shown
through direct calculation that DPC achieves the sum capacity
(or maximum throughput as it was called in [7]). Hence, it was
shown that for rate pairs that obtain the channel’s sum capacity,
DPC is optimal. Their main tool was the Sato upper bound [16]
(or the cooperative upper bound).

Following the work by Caire and Shamai, new papers ap-
peared [20], [22], [27] which expanded the maximum through-
put claim in [7] to the case of any number of users and arbi-
trary number of antennas at each receiver. Again, the Sato upper
bound played a major role. In [27], Yu and Cioffi construct a
coding and decoding scheme for the cooperative channel relying
on the ideas of DPC and generalized decision feedback equal-
ization. A different approach is taken in [20], [22]. To overcome
the difficulty of expanding the calculations of the maximum
throughput in [7] to more than two users, each equipped with
more than one antenna, the idea of MAC-BC duality [13], [20],
[22] was used.

Another step toward characterizing the capacity region of the
MIMO BC is reported in [21] and [19]. Both works show that
if Gaussian coding is optimal for the Gaussian degraded vector
BC, then the DPC rate region is also the capacity region. To
substantiate this claim, the Sato upper bound was replaced with
the degraded same marginals (DSM) bound in [21]. Indeed,
the authors conjecture that Gaussian coding is optimal for the
Gaussian degraded vector BC. However, as indicated above, the
proof of this conjecture is not trivial, as Bergmans’ [1] proof
cannot be directly applied.

In a conference version of this work [24], we reported a proof
of this conjecture and thus, along with the DSM bound [19],
[21], we have shown that the DPC rate region is indeed the ca-
pacity region of the MIMO BC. Here, we provide a more cohe-
sive view. We derive the results on first principles, not hinging
on any of the above existing results (the multiple-access channel
(MAC)-BC duality [20], [22] and the DSM upper bound [19],
[21]). This not only provides a more complete and self-con-
tained view, but it significantly enhances the insight into this
problem and its associated properties.

The main contribution of this work is the notion of an
enhanced channel. The introduction of an enhanced channel
allowed us to use the entropy power inequality, as done for
the scalar case by Bergmans’, to prove that Gaussian coding

is optimal for the vector degraded BC. We show that instead
of proving the optimality of Gaussian coding for the degraded
vector channel, we can prove it for a set of enhanced degraded
vector channels, for which, unlike the original degraded vector
channel, we can directly extend Bergmans’ [1] proof.

Another unique result is our ability to characterize the ca-
pacity region of the MIMO BC under channel input constraints
other than the total power constraint. In particular, in Section II,
we show that we can characterize the capacity region of the
MIMO BC which input is constrained to have a covariance ma-
trix that lies in a compact set. This allows us to characterize the
capacity region for various scenarios; for example, the per-an-
tenna power constraint. In this sense, our result parallels a result
reported in [26] for the sum capacity of the MIMO BC under
per-antenna power constraints.

This paper is structured as follows.
1) In Section II, we introduce two subclasses of the MIMO

BC: the aligned and degraded MIMO BC (ADBC) and the
aligned MIMO BC (AMBC). We also prove that the ca-
pacity region of the MIMO BC under a total power con-
straint on the input can be easily deduced from the capacity
region of the same channel under a covariance constraint
on the input.

2) Next, in Section III, we find and prove the capacity region
of the ADBC under a covariance matrix constraint and total
power constraint on the input.

3) Using the result for the ADBC, we extend the proof of the
capacity region to AMBCs in Section IV.

4) Finally, in Section V, we further extend our results and
find the capacity region of the Gaussian MIMO BC defined
in (1).

II. PRELIMINARIES

A. Subclasses of the Gaussian MIMO BC (the ADBC and
AMBC)

In (1), we presented the GMBC. However, we will initially
find it simpler to contend with two subclasses of this channel
and then broaden the scope of our results and write the capacity
for the GMBC.

The first subclass we will consider is the ADBC. We say that
the MIMO BC is aligned if the number of transmit antennas is
equal to the number of receive antennas at each of the receivers

and if the gain matrices are all identity
matrices . Furthermore, we require that
this subclass will be degraded and assume that the additive noise
vector covariance matrices at each of the receivers are ordered
such that . Taking into account
the fact that the capacity region of BCs (in general) depends on
the marginal distributions , we may assume without loss
of generality that a time sample of an ADBC is given by the
following expression:

(2)

where and are real vectors of size and where
are independent and memoryless real Gaussian noise
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increments such that (where we
define ).

The second subclass we address is a generalization
of the ADBC which we will refer to as the Aligned
MIMO BC (AMBC). The AMBC is also aligned (that is,

and ), but we do
not require that the channel will be degraded. In other words,
we no longer require that the additive noise vectors covariance
matrices will exhibit any order between them. A time
sample of an AMBC is given by the following expression:

(3)

where and are real vectors of size and where
are memoryless real Gaussian noise vectors such that

.
In the case where the gain matrices of the GMBC (the channel

given in (1)), , are square and invertible, it is readily shown
that the capacity region of the GMBC can be inferred from that
of the AMBC by multiplying each of the channel outputs by

. However, a problem arises when the gain matrices are no
longer square or invertible. In Section V (see proof of Theorem
5), we show that the capacity region of the GMBC with non-
square or noninvertible gain matrices can be obtained by a limit
process on the capacity region of an AMBC along the following
steps. First, we decompose the channel using singular-value de-
composition (SVD), into a channel with square gain matrices.
Then, we add a small perturbation to some of the gain entries
and take a limit process on those entries. Thus, we simulate the
fact that the gain matrices of the original channel are not square
or not invertible. After adding the perturbations, the gain ma-
trices are invertible and an equivalent AMBC can be readily es-
tablished. Therefore, the greater part of this paper (Sections III
and IV) will be devoted to characterizing the capacity regions
of the ADBC and AMBC.

B. The Covariance Matrix Constraint

1) Substituting the Total Power Constraint With the Matrix
Covariance Constraint: As mentioned in the Introduction, our
final goal is to give a characterization of the capacity region of
the GMBC under a total power constraint, . Nonetheless, our
initial characterization of this region will be given for a covari-
ance matrix constraint, , such that . We show
here that we can extend this constraint to the case where the
input covariance matrix must lie in a compact set (matrices are
elements in a metric space where the metric distance between
and is defined by the Frobenius norm: .
A compact set in this space is defined in a standard manner, see
[5, pp. 45–51]). The total power constraint is just one example
of a compact set constraint as the set is a
compact set.

Denote by a given rate vector. We
use to denote a codebook that maps a set of

message indices
onto an input word (a real matrix of size ), where

the maximum-likelihood (ML) decoder at each of the receivers
decodes the appropriate message index with an average prob-

ability of decoding error no greater than . Furthermore, the
codewords are such that

A rate vector is said to be achievable under a matrix covari-
ance constraint , if there exists an infinite sequence of code-
books, , with increasing lengths

, rate vectors , matrices , and decreasing probabil-
ities of error , such that as . Similarly, a rate
vector is said to be achievable with a matrix covariance con-
straint that lies in a compact set if for all .

For a given covariance matrix constraint
denotes the capacity region of

the GMBC under a covariance constraint and is defined
by the closure of the set of all achievable rates under a
covariance constraint . Similarly, and

denote the capacity region under a
compact set constraint and a total power constraint . Note
that

The justification for characterizing the capacity regions under a
covariance matrix constraint instead of a total power constraint
is made clear by the next lemma. However, prior to giving this
lemma we must first give the following definition.

Definition 1 (Contiguity of the Capacity Region With Respect
to ): We say that the capacity region
is contiguous with respect to (w.r.t.) if for every ,
we can find a such that the -ball around a rate vector

also contains a rate vector
for all .

As one might expect, the capacity regions that will be defined
in the following sections will all be contiguous w.r.t. .

Lemma 1: Assume that is a compact set of positive
semidefinite matrices. If is contiguous
w.r.t. , then

Proof: The fact that

follows from the definition of those regions. Therefore, we only
need to prove the inclusion in the reverse direction. We will
prove that every rate vector

also lies in for some such that .
If indeed , then there exists an in-

finite sequence of codebooks
with rate vectors and decreasing probabilities of error, , such

Authorized licensed use limited to: Stanford University. Downloaded on January 4, 2010 at 00:26 from IEEE Xplore.  Restrictions apply. 



WEINGARTEN et al.: THE CAPACITY REGION OF THE GAUSSIAN MULTIPLE-INPUT MULTIPLE-OUTPUT BROADCAST CHANNEL 3939

that as . As is a compact set in a metric space,
for any infinite sequence of points in there must be a subse-
quence that converges to a point . Hence, for any arbi-
trarily small , we can find an increasing subsequence
such that .

In other words, if , for any ,
we can find a sequence of codebooks ,
with , which achieve arbitrarily small error probabilities.
Therefore, for every .
By the contiguity of with respect
to , we conclude that every -ball around contains vec-
tors which lie in and therefore,

must be a limit point of . As
is a closed set by definition, we con-

clude that .

Lemma 1 can be easily applied to the total power constraint,
as stated in the following.

Corollary 1: The capacity region under a total power con-
straint is given by

Proof: The proof is a direct result of Lemma 1 where the
compact set is defined as .

2) The Capacity Region Under a Noninvertible Covariance
Matrix Constraint: We differentiate between the case where the
covariance matrix constraint is strictly positive definite (and
hence invertible), and the case where it is positive semidefinite
but noninvertible, . It turns out that for an aligned MIMO
BC (either an ADBC or an AMBC) with a noninvertible co-
variance matrix constraint , we can define an equiva-
lent aligned MIMO BC (either an ADBC or an AMBC), with
a smaller number of transmit and receive antennas and with a
covariance matrix constraint which is strictly positive definite.
Thus, when proving the converse of the capacity regions of the
ADBC and AMBC, we will need only to concentrate on the
cases where is strictly positive. A formal presentation of the
above argument is given in the following lemma.

Lemma 2: Consider an AMBC with transmit antennas,
noise covariance matrices , and a covariance
matrix constraint , such that . Then we
have the following.

1) There exists an AMBC, with antennas and with noise
covariance matrices which has the
same capacity region (as the original AMBC) under a co-
variance matrix constraint , of rank . Furthermore, if

(the channel is an ADBC), then
(i.e., the equivalent channel is also an ADBC).

2) In the equivalent channel we have

where and are defined as the eigenvalue and eigen-
vector matrices (unitary matrices) of such
that has all its nonzero values on the bottom right

of the diagonal. , and are matrices of sizes
and such that

Proof: see Appendix I.

III. THE CAPACITY REGION OF THE ADBC

In this section, we characterize the capacity region of the
ADBC given in (2). As mentioned in the Introduction, even
though this channel is degraded and we have a single-letter for-
mula for its capacity region, proving that Gaussian inputs are
optimal is not trivial. In the following subsections, we give moti-
vations, present intermediate results, and finally, state and prove
our result for the capacity region of the ADBC.

We begin by defining the achievable rate region due to
Gaussian coding under a covariance matrix constraint .
Note that as the channel is degraded, there is no point in using
DPC [7], [8], [20], [22], [27].

It is well known that for any covariance matrix input
constraint and a set of semidefinite matrices

such that , it is possible to achieve
the following rates:

(4)

where

(5)

The coding scheme that achieves the above rates uses a super-
position of Gaussian codes with covariance matrices , and
successive decoding at the receivers. The Gaussian rate region
is defined as follows.

Definition 2 (Gaussian Rate Region of an ADBC): Let be a
positive semidefinite matrix. Then, the Gaussian rate region of
an ADBC under a covariance matrix constraint is given by

s.t.
(6)

Our goal is to show that is indeed the ca-
pacity region or the ADBC.

A. Motivation: A Direct Application of Bergmans’ Proof to the
ADBC and its Pitfalls

Before proving that is the capacity region,
we explain why Bergmans’ [1] proof for the scalar Gaussian BC
does not directly extend to the vector case (the ADBC). This
subsection is intended to give the reader an idea of why and
where the direct application of Bergmans’ proof fails and how
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we intend to overcome this problem. For the interest of con-
ciseness, only a sketch of Bergmans’ proof will be given here.
Furthermore, Bergmans’ approach will only be presented for the
two-users case.

We wish to show, using Bergmans’ line of thought, that
is also the capacity region. Assume, in contrast,

that there is an achievable rate pair which lies outside
. Then, we can find a pair of matrices and

such that

and

(7)

Let and denote the massage indices of the users. Further-
more, let and denote the channel input and channel
outputs matrices over a block of samples. Let and de-
note the additive noise such that and

. Note that and are random matrices
the columns of which are independent Gaussian random vectors
with covariance matrices and , respectively. In addition

and are independent of and . As and
are independent we can use Fano’s inequality to write

and

(8)

where as . For the sake of brevity, in the
following we ignore (in the rigorous proof given in the
following subsections in not ignored).

Therefore, by Fano’s inequality (8) and by (7), we may write

and hence,

Next, we lower-bound using the EPI. The EPI
(see [10, pp. 496–497]) lower-bounds the entropy of the sum of
two independent vectors with a function of the entropies of each
of the vectors. As where is independent of

and , we can use the EPI to bound in the
following manner:

As for any positive semidef-
inite matrices, (Minkowski’s inequality—see [10, p.
505]), we have

with equality in the second inequality, if and only if
and are proportional.

If is proportional to , we can rewrite the above
result such that

(9)

and by (8), (7), and (9), we can write

However, the above result contradicts the upper bound on the
entropy of a covariance limited random variable. Therefore, if
we can find matrices and such that is
proportional to and such that and , then

cannot be an achievable pair. Yet, we cannot always
find such matrices, and .

In the scalar case, is always proportional to and,
therefore, by Bergmans’ proof we see that all points that lie out-
side the Gaussian rate region cannot be attained. Unfortunately,
in the vector case and are not necessarily propor-
tional and, therefore, we cannot directly apply Bergmans’ proof
in the ADBC case.

In order to circumvent this problem, we will introduce, later,
a new ADBC that we will refer to as the enhanced channel.
For every rate pair which lies outside the Gaussian
rate region of the original channel, we will define a different
enhanced channel. The enhanced channel will be defined such
that its capacity region will contain that of the original channel
(hence the name) and such that will also lie outside the
Gaussian region of the enhanced channel. Yet, we will show that
for the enhanced channel, we can find and such
that the proportionality condition will hold. Therefore, we will
be able to show that every rate pair that lies outside the
Gaussian rate region, is not achievable in its respective enhanced
channel, and therefore, neither in the original channel.
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B. ADBC—Definitions and Intermediate Results

Before turning to prove the main result of this section, we will
first need to give some definitions and intermediate results. We
begin with the definition of an optimal Gaussian rate vector and
the realizing matrices of that vector.

Definition 3: We say that the rate vector
is an optimal Gaussian rate vector under a covariance ma-
trix constraint , if and if there
is no other rate vector such that

and such that at least one of the
inequalities is strict. We say that the set of positive semidef-
inite matrices such that , are
realizing matrices of an optimal Gaussian rate vector if

is an optimal Gaussian rate vector.

The following lemma allows us to associate points that do
not lie in the Gaussian rate region with optimal Gaussian rate
vectors.

Lemma 3: Let be a rate vector satis-
fying

Then, there is a strictly positive scalar , and realizing
matrices of an optimal Gaussian rate vector , such
that

(10)

Proof: see Appendix II.

In general, there is no known closed form solution for the
realizing matrices of an optimal Gaussian rate vector. However,
we can state the following two simple lemmas:

Lemma 4: Let be realizing matrices of an op-
timal Gaussian rate vector under a covariance matrix constraint

. Then, .
Proof: We note that of all users, only the Gaussian achiev-

able rate of user , is a function of
such that

Therefore, as are realizing matrices of an optimal
Gaussian rate vector, given the set of matrices,

is the choice of which maximizes
. However, as and

as when and is maximized
when .

As a result of the preceding lemma, we can see that the rates of
any optimal Gaussian rate vector may be written as a function of

only matrices , and the covariance matrix
constraint . For this reason, we modify our notation of the rate
functions, , and write instead of

. The rates are calculated using (5) and
assigning . Furthermore, given an optimal
Gaussian rate vector

the realizing matrices of an optimal Gaussian rate vector,
, can be represented as the

solution of the following optimization problem:

maximize

such that

(11)

The following lemma states necessary Karush–Kuhn–Tucker
(KKT) conditions on the realizing matrices of an optimal
Gaussian rate vector.

Lemma 5: Assume that (strictly positive) and let
solve the problem in (11). In addition, define

and assume that . Then, the
following necessary KKT conditions hold:

(12)

where , and and where
are positive semidefinite matrices such that
. Furthermore, the partial gradients are given by

(13) at the top of the following page.
Proof: For every , the functions are differentiable

w.r.t. . Thus, the gradients in (13) are the stan-
dard gradients of the log det functions. The KKT necessary con-
ditions that appear in (12) are the standard ones (see [2, Secs.
5.1–5.4, pp. 270–312] and [4, pp. 241–248]). However, as the
problem is not convex, we need to show that some set of con-
straint qualifications (CQs) hold in order to prove the existence
of Lagrange multipliers (see [2, Sec. 5.4, pp. 302–312,]). Hence,
we demanded here that in order
to satisfy the CQs. As the proof that these CQs are satisfied is
rather technical, we defer the rest of the proof to Appendix IV.

Next, we introduce a class of enhanced channels. This class of
channels has at least one element that has several surprising and
fundamental properties derived below. These properties form
the basis of our capacity results.
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(13)

Definition 4: (Enhanced Channel) We say that an ADBC
with noise increment covariance matrices
is an enhanced version of another ADBC with noise increment
covariance matrices if

Similarly, we say that an AMBC with noise covariance matrices
is an enhanced version of another AMBC

with noise covariance matrices if

Clearly, the capacity region of the original channel is con-
tained within that of the enhanced channel. Furthermore, as

when , and ,

and therefore,

We can now state a crucial observation, connecting the def-
inition of the optimal Gaussian rate vector and the enhanced
channel.

Theorem 1: Consider an ADBC with positive semidefinite
noise increment covariance matrices such that

. Let be realizing matrices of an optimal
Gaussian rate vector under an average transmit covariance ma-
trix constraint . Then, there exists an enhanced ADBC
with noise increment covariances such that the
following properties hold.

1) Enhanced Channel:

(14)

2) Proportionality: There exist
such that

(15)

3) Rate Preservation and Optimality Preservation:

(16)

and are realizing matrices of an optimal
Gaussian rate vector in the enhanced channel as well.

Proof: Assume that are realizing matrices of
an optimal Gaussian rate vector under a strictly positive-defi-
nite covariance matrix constraint . If are all
strictly positive , by the KKT conditions in Lemma 5
we know that (as ) and by manipu-
lating (11) it is possible to show that the proportionality property
already holds for our original channel and hence the proof of the
theorem is almost trivial for this case.

Loosely speaking, for the more general case where ,
we can create an enhanced channel by subtracting a matrix

from the noise covariance matrix of user such that the new
noise covariance matrix is given by .
However, is chosen such that

This choice of ensures that the noise covariance of user is
modified only in those directions where, effectively, no informa-
tion is being sent to that user and hence, using the same power
allocation matrices , the rate of user remains the same in
the enhanced channel as in the original channel. This process
is repeated for all users. Using Lemma 5, it is possible to show
that there exists a choice of matrices such that the resultant
channel is a valid ADBC and such that the proportionality prop-
erty holds. In the following we give a rigorous proof of this ar-
gument.

We divide our proof into two. Initially, we will assume that
(note that the matrices can still

have null eigenvalues). In this case, we actually assume that
there is a strictly positive rate to each of the users (this is a
simple observation from the Gaussian rate functions, (5)). Later,
we give a simple argument that will allow us to expand the proof
to any possible optimal Gaussian rate vector.

As , Lemma 5 holds. Therefore, by plugging the
expression for the partial gradients (13) into the equations
in (12) and subtracting equation from the th equation
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(except for where the expression is taken as is), we
obtain the following equations:

(17)

We now use the assumption that to
show that are strictly positive and that

. As , we can see that for ,
the left-hand side of (17) is strictly positive definite (recall that
in the Introduction we assumed that
in order to limit ourselves to the case where all users have fi-
nite rates). Furthermore, as , as
otherwise, we would have had (in con-
tradiction to Lemma 5). Therefore, the matrix must have
a zero eigenvalue and hence, must be strictly positive, as
otherwise the right-hand side and hence the left-hand side of
(17) would have had a zero eigenvalue (and the left-hand side
would not be strictly positive). We can repeat the above argu-
ments for all in expression (17) and conclude
that .

Next, let be an eigenvector corresponding to a zero eigen-
value of (which has some zero eigenvalues because we
assume that ). We have

(18)

But as when , we know that

This means that (18) can hold only if

As both and are positive semidefinite and as
(Lemma 5), we must have .

Taking into account the fact that in (17) are strictly pos-
itive such that and that

, we can use Lemma 10 in Appendix V to show
that there exists an enhanced channel with noise increment
covariance matrices such that

(19)

and such that

(20)

and where .
By (19) we can write

and, therefore, the proportionality property holds for the en-
hanced channel. By (20), we may write

and, therefore, the rate preservation property holds.
To complete the proof for the case where , we still

need to show that are also realizing matrices of an
optimal Gaussian rate vector in the enhanced channel. For that
purpose, we observe that it is sufficient to show that

(21)

To show that this is indeed a sufficient condition for
optimality, we note that if there were another vector

such that
where the inequality was strict for at least
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one of the elements, then by Lemma 8 in Appendix II we would
be able to find a rate vector

for some , contradicting (21). We proceed to show that
indeed (21) holds. For any set of matrices such that

we have

Hence, as , it is enough to show that given
, the set of realizing matrices

minimizes over all sequences of
semidefinite matrices such that

and such that .
As for positive semidefinite
matrices and (Minkowski’s inequality [10, p. 505]), we
may write

...

where the inequalities hold with equality if and only if

is proportional to for all

. However, we have shown that this proportionality prop-
erty holds for . Therefore, if we assign instead
of , we obtain the lower bound given by the last line in the pre-
ceding equation. Thus, we have shown that indeed
minimize and, therefore, are realizing
matrices of an optimal Gaussian rate vector in the enhanced
channel.

:

Finally, we expand the proof to all possible sets of realizing
matrices of an optimal Gaussian rate vector . Note
that some of the matrices may be zero. Let denote the
number of nonzero matrices , and let for
be the index function of the nonzero matrices such that

and such that
. We can define a compact channel which is also an ADBC

with the same covariance matrix constraint and with noise
increment covariance matrices such that

where we define . Similarly, we define
such that

Note that are realizing matrices of an optimal
Gaussian rate vector in the compact channel and achieve the
same rates (nonzero rates) as in the original channel. Since

, and , we can use the above proof to show
that Theorem 1 holds for the compact channel.

We can now define an enhanced version of the original
channel using the construction implied by Theorem 1 for the
case of nonzero . Since Theorem 1 holds for the compact
channel, we know that there exists an enhanced compact
channel for which the results of the theorem
hold. We now define an enhanced version of the
original channel as follows:

otherwise

(22)

where (if ) and where
are chosen such that

and such that

As , it is possible to find such .
To verify that this is an enhanced version of the orig-

inal channel we need to show that
. For the case of , we observe

that by the definition of this equality holds. For the case of
, we define .
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Due to (22) and the definitions of the compact and the enhanced
compact channels we can now write

To verify that proportionality property holds for the channel
defined in (22), we need to show that

for some nonnegative ’s. We consider three cases.
1) If then, as and by (22) we can

write

where .

2) If and then, by (22)

3) If and then, as
and by (22) we can write

for some .
Finally, we note that the optimality of the rates in the en-

hanced channel is a result of the proportionality property (as was
shown for the case of using the Minkowski inequality)
and the rate preservation property holds for this version since
it holds for the enhanced compact channel and since for user
with the Gaussian rate is always zero (regardless of the
user’s noise matrix).

C. ADBC—Main Result

We can now use Lemma 3 and Theorem 1 that were presented
in the previous subsection to prove that is the
capacity region. Our approach will be similar to Bergmans’ but

this time we will be able to circumvent the pitfalls that we en-
countered in the direct application of Bergmans’ proof (Subsec-
tion III-A) by applying his proof to the enhanced channel instead
of the original channel, and utilizing the proportionality prop-
erty which holds for that channel. Before we turn to the proof,
we formally state the main result.

Theorem 2: Let denote the capacity region of
the ADBC under a covariance matrix constraint . Then

.
Proof: As is a set of achievable rates, we

have . Therefore, we need
to show that . We will treat
separately the cases where the covariance matrix constraint is
strictly positive definite (i.e., ) and the case where is
positive semidefinite (i.e., ) such that . We will
first consider the case .

:

We shall use a contradiction argument and assume that
there exists an achievable rate vector

. We will initially assume that
and later, we will use a simple argument to extend the

proof to all nonnegative rates .
:

Since and (by our assumption
. The case of may include the case of

and therefore it is treated separately), we know by Lemma 3 that
there exist realizing matrices of an optimal Gaussian rate vector

, such that

for some . Since we assume that , we know
by Theorem 1 that for every set of realizing matrices of an
optimal Gaussian rate vector , there exists an en-
hanced ADBC, , such that the proportionality and
rate preservation properties hold. By the rate preservation prop-
erty, we have .
Therefore, we can rewrite the precediing expression as follows:

...

(23)

Let denote the index of the message sent
to user and let be a matrix of size denoting the signal
received by user (in time samples). By Fano’s inequality and
the fact that the ’s are independent, we know that there is a
sufficiently large such that we can find a codebook of length-
codewords and for which
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(24)

Let denote the enhanced channel outputs of
each of the receiving users. As
form a Markov chain, we can use the data processing theorem
to rewrite (24) as follows:

(25)

Thus, in (23) and (25), we have shifted the problem from the
original channel to the enhanced channel. However, as the pro-
portionality property holds for the enhanced channel, we can
use Bergmans’ approach to prove a contradiction. Next, we ba-
sically repeat Bergmans’ steps, as they were presented in [1] and
Subsection III-A.

By (25) and (23) we can write

Thus,

(26)

We may write where is a random
Gaussian matrix with independent columns and independent
of both and the messages . Each column in

has Normal distribution with zero mean and a covariance
matrix . Next, we use the EPI to lower-bound the entropy
of the sum of two independent vectors with a function of the
entropies of each of the vectors as follows:

(27)

But by the proportionality property in Theorem 1, we know that
is proportional to and therefore,

Thus, we may write

(28)

Again, we can use (25) and (23) and write

Combining the expression above and (28) we get

We continue to calculate for by
using the above argumentation and by alternating between the
EPI and Fano’s inequality. Thus, for the th iteration we get

where the equality follows from the fact that
(Lemma 4). However, the above expression cannot hold due to
the upper bound on the entropy of a covariance limited random
vector, as follows:
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where is the th column of the random matrix . The
second inequality is due to the optimality of the entropy of the
Gaussian distribution. The third inequality is due to the con-
cavity of the log det function, and the last inequality is due

to the fact that and the fact that
if .

Thus, we have contradicted our initial assumption and proved
that all rate vectors
such that , are not achievable. To com-
plete the proof for , we now treat the case where the re-
quirements on the rates are instead of
strict inequalities.

:

Assume that such that
is an achievable rate. Let denote

the number of strictly positive elements in and let
be the index function of those elements such that

. We define the compact rate
vector . Similarly, we define a com-
pact -user ADBC, with noise increment covariance matrices

(where we assign ) and the same covariance matrix
constraint. Clearly, as was achievable in the original ADBC,
so is the compact rate vector achievable in the compact
ADBC. Furthermore, since , then also

. Therefore, in the compact channel we
have an “alleged” achievable rate vector which lies outside the
Gaussian rate region. However, in the compact channel, this
vector is element-wise strictly positive and we can apply the
above proof to contradict our initial argument.

To complete the proof, we proceed and consider the case
where the covariance matrix constraint is such that
and .

:

If is not (strictly) positive definite, by Lemma 2 we know
that there exists an equivalent ADBC with less transmit an-

tennas, noise increment covariance matrices , and
an input covariance matrix constraint, , with the exact
same capacity region. Because is strictly positive definite, the
above proof could be applied to the equivalent channel to show
that its capacity region coincides with its Gaussian rate region,
i.e.,

Moreover, it is possible to show that when is not strictly pos-
itive definite

Therefore, we have shown that the functional rate region
coincides with the operational rate region

for all .

Next, in the following corollary we extend the result of The-
orem 2 to the case of the total power constraint.

Corollary 2: Let denote the capacity region of
the ADBC under a total power constraint . Then

Proof: As is contiguous w.r.t. , the
corollary follows immediately by Lemma 1.

D. An ADBC Example

The following example illustrates the result stated in The-
orem 1. In this example, we consider a two-user ADBC under
a covariance matrix input constraint, where the transmitter and
each of the receivers have two antennas such that

and

The boundary of the Gaussian region is plotted
using a solid line in Fig. 1. Two additional curves (

and ) are plotted. These curves are boundaries of
Gaussian regions of enhanced channels which were obtained for
two different points on the solid curve.

The boundary of , illustrated by the dashed
curve, was calculated with respect to point

on the solid curve. The power allocation
that achieves this point is given by

and

The dashed line corresponds to the boundary of a Gaussian
region of an enhanced version of the original channel

, the noise increment covariances of which
are given by

and

As predicted by Theorem 1, we can see that for the
point on the boundary of

, there exists an enhanced version of the original
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Fig. 1. Illustration of the results of Theorem 1.

channel which is also an ADBC and such that the boundary of
its Gaussian region is tangential to that of the original channel
at . In fact, in this case, the dashed line intersects with
the solid line for all rates and upper bounds the solid
line for all . Furthermore, one can easily check that
the proportionality property holds such that .

The second curve, the boundary of given by the
dotted line, was computed with respect to point

on the solid curve. The power allocation
that achieves this point is given by

and

The dotted line corresponds to the boundary of a Gaussian
region of an enhanced version of the original channel

, the noise increment covariances of which
are given by

and

Again, we see that the prediction of Theorem 1 holds.
The solid and the dotted curves are tangential at

and one can easily check that
.

IV. THE CAPACITY REGION OF THE AMBC

In this section, we build on Theorem 2 in order to charac-
terize the capacity region of the aligned (not necessarily de-
graded) MIMO BC. This result is particularly interesting in light
of the fact that there is no single-letter formula for the capacity
region, as the AMBC is not necessarily degraded. In addition, a
coding scheme consisting of a superposition of Gaussian codes
along with successive decoding cannot work when the channel
is not degraded. Therefore, following the work of Caire and
Shamai [7], we suggest an achievable rate region based on DPC.
In [7], [20], [27], [22], it was shown that DPC achieves the
sum capacity of the channel. In this section, we show that DPC
along with time sharing covers the entire capacity region of the
AMBC.

In [19], [21], the authors used the DSM bound to show that if
Gaussian coding is optimal for the vector degraded BC (where
we do not necessarily have and ), then the DPC
rate region is also the capacity region of the GMBC. In the pre-
vious section, we have shown that Gaussian coding is optimal
for the ADBC. This result can be extended to the general vector
degraded BC using a limit process on the noise variances of
some of the receive antennas of some of the users, in a similar
manner to what is done in the next section. In [24], we used the
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results of [19], [21], and the result presented in the previous sec-
tion to prove the converse of the GMBC. However, as the tight-
ness of the DSM bound was established only under a total power
constraint , the capacity result for the GMBC in
[24] only holds under these input constraints. In this paper, we
take a different approach which is a natural and simple exten-
sion of Theorem 2, and which does not rely on the DSM bound
presented in [19], [21]. In the following, we are able to give a
general result which is true under any compact covariance set
constraint on the input .

In the following subsections, we present the DPC region, give
intermediate results, and provide a full characterization of the
capacity region of the AMBC.

A. AMBC—DPC Rate Region

The dirty-paper encoder performs successive precoding of the
users’ information in a predetermined order. In order to define
this order, we use as a permutation function which permutes
the set such that
and . Note that this ensures that exists.

Given an average transmit covariance matrix limitation
, a permutation function and a set of posi-

tive semidefinite matrices
, such that , the following rates are

achievable in the AMBC using a DPC scheme [7], [20], [22],
[27]

where

(29)

and where is the inverse permutation such that
. Note that is

not the rate of the (physical) th user but rather the rate of the
th user in line to be encoded. We can now define the

DPC achievable rate region of an AMBC.

Definition 5 (DPC Rate Region of an AMBC): Let
be a positive semidefinite matrix. The DPC rate region,

, of an AMBC with a covariance matrix
constraint is defined by the convex closure:

(30)

where is the collection of all possible permutations of the
ordered set is the convex closure operator and

where is given in (31) at the bottom of the
page.

Note that for an ADBC

where is the identity permutation such that and
where (and where ).
In Section IV-C, we prove that is indeed the
capacity region.

B. AMBC—Intermediate Results

We first note that not all points on the boundary of
can be directly obtained using a DPC

scheme, but rather, only through time-sharing between rate
points that can be obtained using DPC. Therefore, unlike the
ADBC case, we do not use a similar notion to the optimal
Gaussian rate vector, as not all boundary points can be imme-
diately characterized as a solution of an optimization problem
(such as in the ADBC case). Instead, as the DPC region

, is convex by definition, we use supporting
hyperplanes (see [4, pp. 46–50]) in order to define this region.
In this subsection, we present supporting lemmas and a crucial
observation that is made in Theorem 3 that will help us in the
next subsection to prove that is indeed the
capacity region of the AMBC.

Given a sequence of scalars and a scalar ,
we say that the set is a
supporting hyperplane of a closed and bounded set , if

, with equality for at least
one rate vector . Note that as is closed
and bounded, exists for any vector

. Hence, for any vector , we can find a supporting
hyperplane for the set .

Before stating the main result of this subsection, we present
and prove two auxiliary lemmas.

Lemma 6: Let
be a rate vector such that . Then, there
exists a constant and a vector such that

and where not all are zero, such that the
hyperplane is a supporting
and separating hyperplane for which

(32)

and for which

(33)

for some such that
and

(31)
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where (32) holds with equality for at least one point in
.

Proof: As is a closed and convex set
and is a point which lies outside that set, we
can use the separating hyperplane theorem (see [4, Pt. I, Ch. 2,
pp. 46–50]) to show that there exists a supporting hyperplane
which strictly separates and .
In other words, there is a vector , and a con-
stant such that (32) and (33) hold. We need to show that we
can find a vector with nonnegative elements and a nonnega-
tive scalar .

Assume, in contrast, that for some
and that maximizes over all

We note that for all vectors , also

(see Corollary 5 in Appendix III). Therefore, as , the
vector which optimizes must be such that .
Thus, we conclude that . Consequently, choosing

, will also lead to a supporting and separating hyperplane since
it can only increase (as are all nonnegative), and
does not affect the optimization of over all

as otherwise, would not have been optimal for the original
choice of . Moreover, we know that at least one of the ele-
ments of is strictly positive due to the strict separation im-
plied by the separating hyperplane theorem. Finally, as we have
shown that we can find a supporting and separating hyperplane
with a vector that contains only nonnegative elements, and as

contains only nonnegative vectors,

Lemma 7: Let be a vector with nonnega-
tive entries and let be the number of strictly pos-
itive elements in the vector. Furthermore, let ,
denote the index function of those elements such that

, points to strictly positive entries of the vector and
such that . Consider an AMBC
with users and noise covariance matrices and
define a compact AMBC with users and noise covariance ma-
trices given by . Then

(34)

where

and

and

and

and where is an identity permutation function over the set
.

Proof: Let , be the optimizing ma-
trices of the optimization problem on the left-hand side of
(34). Furthermore, let

. We claim that if
then and . To show this, we observe that
we can always modify the choice of ’s to increase the DPC
rates for ’s which correspond
to at the expense of DPC rates for users which cor-
respond to , without violating the matrix constraint
(see Lemma 9 in Appendix III). This will only increase the
target function , since the
rates we reduce are multiplied by and the rates we
increase are multiplied by . Thus, we have shown that
if , then . Furthermore, by the definition of the
rates it is easy to show that as

if and only if . Therefore, if , then .
We can now define . It is easy to

see that

and therefore,

On the other hand, we can show that the opposite inequality
also holds for the above expression. Let ,
be the optimizing solution of the optimization problem on the
right-hand side of (34). Define

otherwise

where is the inverse of the index function such that
. It is easy to see that

and, therefore,
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The following theorem brings to bare a relation between the
ideas of a supporting hyperplane and the enhanced channel. This
theorem is a natural extension of Theorem 1 to the AMBC case
and plays a similar role in the proof of the capacity region of the
AMBC to the role played by Theorem 1 in the ADBC case.

Theorem 3: Consider an AMBC with noise covari-
ance matrices and an average transmit
covariance matrix constraint . Define to be
the identity permutation, . If

is a supporting hyper-
plane of the rate region such that

and , then there ex-
ists an enhanced ADBC with noise increment covariances

such that the following properties hold.
Enhanced Channel:

Supporting Hyperplane Preservation:

is also a supporting hyperplane of the rate region
.

Proof: To prove the lemma, we will investi-
gate the properties of the gradients of the DPC rates,

, at the point where the rate region
and the hyperplane

touch (as is a supporting hy-
perplane, there must be such a common rate vector). Let

be that rate vector and let be a se-
quence of positive semidefinite matrices such that

and such that

By the definition of the supporting hyperplane, we know that
the scalar and the sequence of matrices are the
solution of the following optimization problem:

maximize

such that

We now note that of all , only
is a function of and

is given by

Therefore, we can use the fact that for
any positive semidefinite matrices and such that

and to show that for a given se-
quence of matrices, , the weighted
sum is maximized
by setting (due to the constraint

). Therefore, and the
matrices are the solution of the following
optimization problem:

maximize

such that

(35)

where

and where . Note that the above optimiza-
tion problem differs from the previous one in that the optimiza-
tion is done over matrices instead of matrices.

The objective function in (35) is differentiable over
and its partial gradients are given by

(36)

Let

and

denote the optimization region of the problem in (35). As the
objective function in (35) is continuously differentiable over an
open set that contains and as is nonempty and convex, the
optimal solution of (35), , must observe the fol-
lowing necessary KKT conditions (note that as the optimization
problem in (35) does not contain any inequality constraints,
there is no need to examine any constraint qualifications, as
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in Theorem 1. See also Appendix IV and [2, Sec. 5.4, pp.
302–312])

where is a positive semidefinte matrix are such
that . Note that as and ,
the fact that implies that . By
subtracting equation from the th equation (except for

, where the expression is taken as is), we obtain the
following

(37)

We now treat separately the case where for all
and the case where for some .

We start with the case of . Once we have proved the
lemma under the assumption that for all ,
we will be able to use a simple argument to extend this result to
the more general case.

:

As we assume that (this assumption was made
in Theorem 3) and as , we can use Lemma 10 in
Appendix V to show that there exists an enhanced ADBC with
noise increment covariance matrices , such that

(38)

and such that

(39)

By the expressions of (29), (5), and (39), we can
see that

(40)

We now complete the proof for the case where
by showing that is

also a supporting hyperplane of the rate region
and intersects with it at . For that purpose, it is sufficient to
show that

is maximized when . For that reason,
we define

and rewrite the difference between the weighted sums as fol-
lows:

(41)

where the inequality results from the fact that

because
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By (38), we know that . Therefore, we may
write (42) at the bottom of the page. As , by the
concavity ( of the log det function and Jensen’s inequality,
each of the summands in the last equality are negative and there-
fore, we may write

for all positive semidefinite matrices with power covariance
constraint . This completes the proof of the lemma for the case

.
:

Finally, we expand the proof to the case of any set of nonneg-
ative scalars , where at least one of them is strictly
positive. The method we will apply here is very similar to the
one used in the proof of Theorem 1. Let denote
the number of strictly positive scalars . Since
we assume that , it is clear that

and . We can
now define a compact channel which is also an AMBC with the
same covariance matrix constraint and with noise covariance
matrices such that

Similarly, we define a compact hyperplane

By Lemma 7, we conclude that

is a supporting hyperplane of , where
is now the identity permutation over the set . There-
fore, we can use the preceding proof for the case where are
strictly positive to show that the theorem holds for the compact

channel. That is, we can find an enhanced ADBC, with noise

increment covariance matrices , such that

is a supporting hyperplane of .
We now define an enhanced ADBC for the original channel

using the enhanced ADBC of the compact channel. The noise
increment covariance matrices are defined as fol-
lows:

where , are chosen such that
and such that

As , it is possible to find such . Clearly,
we have defined an enhanced ADBC for the original channel.
Furthermore, as

is a supporting hyperplane of , we can use
Lemma 7 to show that

is a supporting hyperplane of .

C. AMBC—Main Result

We can now use Theorem 3 and the capacity region result of
the ADBC (Theorem 2) to prove that is the
capacity region of the AMBC. Before we turn to the proof, we
formally state the main result of this section.

Theorem 4: Let denote the capacity region of
the AMBC under a covariance matrix constraint . Then

.
Proof: To prove Theorem 4, we will use Theorem 3

to show that for every rate vector, , which lies outside
, we can find an enhanced ADBC, whose

capacity region does not contain . However, due to the first
statement of Theorem 3, the capacity region of the enhanced

(42)
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channel outer bounds that of the original channel, and there-
fore, cannot be an achievable rate vector. Just as in the
proof of Theorem 2, we treat separately the cases and

. We first treat the case where and then
broaden the scope of the proof to all .

:

Let be a rate vector with nonnegative ele-
ments which lies outside the rate region .
By Lemma 6, we know that there is a supporting and separating
hyperplane where

are nonnegative and at least one of the
elements is positive.

Let be a permutation on the set that orders the
elements of such that .
We observe that as

and as is a supporting
hyperplane of , we can write

Furthermore, as is
also a separating hyperplane, we can also write

and therefore, is
a supporting and separating hyperplane for the rate region

.
Note that, in general, may be any one of the possible

permutations. Therefore, to prove the last statement, we ex-
ploited the fact that is the convex hull of the
union over all DPC rate regions , where
the union is taken over all possible DPC precoding orders.

For brevity, we will assume in the following that
or alternatively, that . If that is not the case, we

can always reorder the indices of the users such that this rela-
tion will hold. From the above, we know that

is a supporting and separating hyper-
plane of . By Theorem 3, we know
that there exists an enhanced ADBC whose Gaussian rate re-
gion lies under the supporting hyperplane and

hence, . However, by The-
orem 2, we know that the Gaussian rate region of the enhanced
ADBC is also the capacity region. Therefore, we conclude that

must lie outside the capacity region of the en-
hanced ADBC.

To complete the proof for the case , we recall that
the capacity region of the enhanced ADBC contains that of
the original channel and therefore, must lie out-
side the capacity region of the original AMBC. As this is true

for all rate vectors which lie outside , we
conclude that . However,

is a set of achievable rates and therefore,

:

Following the same ideas that appeared in the proof of The-
orem 2, we broaden the scope of our proof to the case of any

. If is not (strictly) positive definite, by Lemma 2, we
know that there exists an equivalent AMBC with less transmit
antennas, noise covariance matrices , and an input
covariance matrix constraint with the exact same ca-
pacity region. Because is strictly positive definite, the above
proof (for the case of ) could be applied to the equivalent
channel to show that its capacity region is equal to its DPC rate
region, . Moreover, it is possible to show that
when is not strictly positive definite,

. Hence, coincides with
the capacity region of the AMBC for all .

The following corollary extends the result of Theorem 4 to
the case of the total power constraint.

Corollary 3: Let denote the capacity region of
the AMBC under a total power constraint . Then

Proof: As is contiguous w.r.t. , the
corollary follows immediately by Lemma 1.

D. AMBC Example

The following example illustrates the statements of The-
orem 3. In this example, we consider a two-user nondegraded
AMBC under a covariance matrix input constraint, where the
transmitter and each of the receivers have four antennas such
that

and

The boundary of the DPC region, is illus-
trated by a solid curve in Fig. 2. The dotted line, in the same
graph, corresponds to the hyperplane

. In addition, we plotted a dashed curve, corre-
sponding to the boundary of the Gaussian region of an enhanced
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Fig. 2. Illustration of the results of Theorem 3.

and degraded version of the above AMBC with noise increment
covariances

and

As predicted by Theorem 3, we can see from Fig. 2 that for the
given hyperplane, we can find an enhanced and degraded ver-
sion of the channel such that its Gaussian region is supported
by the same hyperplane. Furthermore, in relation to the proof of
this lemma, we note that the hyperplane and both curves inter-
sect at .

V. EXTENSION TO THE GENERAL MIMO BC

We now consider the GMBC (expression (1)) which, un-
like the ADBC and AMBC, is characterized by both the
noise covariance matrices, , and gain matrices,

. We will prove that the DPC rate region [7], [20],
[22], [27] of this channel coincides with the capacity region.

A. GMBC—DPC Rate Region

We begin by characterizing the DPC rate region of the
GMBC. Given an average transmit covariance matrix limi-
tation , a permutation function , and a set of

positive semidefinite matrices
, such that , the following rates are

achievable in the GMBC using a DPC scheme [7], [20], [22],
[27]:

where

(43)

We now define the DPC achievable rate region of a GMBC.

Definition 6 (DPC Rate-Region of a GMBC): Let
be a positive semidefinite matrix. The DPC rate region,

, of the GMBC with a covariance
constraint , is defined by the following convex closure:

(44)

where is given in (45) at the top
of the following page.
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for some such that
and

(45)

B. GMBC—Main Result

In the following, we extend the result of Theorem 4 and prove
that is the capacity region. We first
formalize this result in the following theorem.

Theorem 5: Let denote the capacity
region of the GMBC under a covariance matrix constraint

. Then

Proof: As

we need only to show that

We do that in two steps. In the first step, we use the SVD to
rewrite the original MIMO BC (1) as a MIMO BC with square
gain matrices of sizes . In the second step, we add a small
perturbation to some of the entries of the gain matrices such
that they will be invertible and such that their capacity region
is enlarged. As the gain matrices are invertible, we will be able
to infer the capacity region of the new channel from that of an
equivalent AMBC. We will complete the proof by showing that
the capacity region of the original MIMO BC can be obtained
by a limit process on the capacity region of the perturbed MIMO
BC.

For the first step of our proof, we will consider a sequence of
variants of the GMBC which preserve both the DPC rate region
and the capacity region of the original GMBC.

As a reminder, the channel we are considering is given by

(46)

where is the singular value decomposition of and
where and are unitary matrices of sizes and
and is a diagonal matrix of size . We assume, without
loss of generality, that the singular values of are arranged
in rising order such that all nonzero singular values are located
on the lower right corner of . That is,

and all other elements of are
zero and where . Therefore, the first
rows of are zero.

We multiply the channel outputs at each of the users by .
As this manipulation is a reversible one, it has no effect on the
capacity region of the channel. Furthermore, the DPC rate re-
gion remains the same. We now get the following channel:

(47)

where . Next, we rewrite such
that

where , and are of sizes
, and . We define

We now create a new variation of the channel by multiplying
the received vector of each user by its appropriate

(48)

where the second equality is a consequence of having
zero rows at the top of . As is a reversible transformation,
the capacity and DPC rate regions remain unchanged for this
new channel. Furthermore

(49)

is block diagonal with and of sizes
and on the diagonal. Therefore, as is

a Gaussian vector, the noise at the first antennas is
independent of the noise at the other antennas.

As the first rows in are all zero such that

it is clear that the first receive antennas at each user
are not affected by the transmitted signal. Furthermore, as the
noise vector at these antennas is independent of the noise at the
other antennas (by the structure of the covariance matrix

(49)), it is clear that the first antennas (in (48)) do
not play a role in the ML receiver. Hence, we may remove these
antennas altogether, without any effect on the capacity region. In
addition, due to the block-diagonal structure of the matrix ,
removing the first antennas will not affect the DPC rate
region as well, as is shown in the following equation:
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Alternatively, adding zero rows to at its top (or alter-
natively, adding zero rows at the top of ) and appropriately
adding receive antennas with independent (of the other an-
tennas) Gaussian noise will also preserve the capacity and DPC
rate regions.

Therefore, we may write yet another variant of the channel,
this time with transmit antennas and receive antennas for each
user

(50)

where and where is a diagonal matrix with
the first elements on the diagonal equal to zero and the
other equal to the -elements on the lower right diagonal
of such that

Again,

is block diagonal where is of size and
again both the capacity and DPC regions are preserved.

To complete the proof of Theorem 5, it is sufficient to show
that

To that end, we proceed with the second step of our proof and
define a new channel, which this time, does not preserve the
capacity region

(51)

where and for some . is a
diagonal matrix such that

otherwise.

Note that the last rows of are identical to those of
. Therefore, as the ML receiver of the channel in (50) only

observes the lower antennas, any codebook and ML receiver

designed for the channel in (50) will achieve the exact same
results in the channel given in (51). Thus, it is clear that

Additionally, note that is invertible and multiplying each

receive vector by will yield an AMBC with the same DPC
and capacity regions as that of the channel in (51). As the DPC
and capacity regions of an AMBC coincide (Theorem 4), we can
write

(52)

We now make use of the fact that we can choose arbitrarily
and note that due to the contiguity of the log det function over
positive definite matrices, we have

where the convergence is uniform over all positive semidefinite
matrices such that . Thus, by the uniform con-
vergence property and by (52), it is clear that for every
and every rate vector , the -ball
around contains a vector .
Therefore,

closure

However, as is closed,

We finalize this section by extending the result of Theorem 5
to the case of the total power constraint, as stated in the fol-
lowing corollary.

Corollary 4: Let denote the capacity
region of the GMBC under a total power constraint, .
Then

Proof: As is contiguous w.r.t.
, the corollary follows immediately by Lemma 1.

We can easily derive the capacity region under a per-antenna
power constraint by replacing the constraint with
the set of constraints in the pre-
ceding corollary. is the th element on the diagonal of
and is the power constraint on the th transmit antenna.
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VI. SUMMARY

We have characterized the capacity region of the Gaussian
multiple-input multiple-output (MIMO) broadcast channel
(BC) and proved that it coincides with the dirty-paper coding
(DPC) rate region. We have shown this for a wide range of
input constraints such as the average total power constraint and
the input covariance constraint. In general, our results apply to
any input constraint such that the input covariance matrix lies
in a compact set of positive semidefinite matrices.

For that purpose, we have introduced a new notion of an en-
hanced channel. Using the enhanced channel, we were able to
modify Bergmans’ proof [1] to give a converse for the capacity
region of an aligned and degraded Gaussian vector BC (ADBC).
The modification was based on the fact that Bergmans’ proof
could be directly extended to the vector case when instead of
the original one, an enhanced channel was considered. By as-
sociating an ADBC with points on the boundary of the DPC
region of an aligned (and not necessarily degraded) MIMO BC
(AMBC), we were able to extend our converse to the AMBC
and then, to the general Gaussian MIMO BC. We suspect that
the enhanced channel might find use beyond this paper.

In this paper, we considered the case where only private mes-
sages are sent to all users. In [25], we obtained some results
for the case where in addition to private messages, a common
message is sent. Other aspects of the Gaussian MIMO BC are
reviewed in [6].

APPENDIX I
PROOF OF LEMMA 2

Proof: We define an intermediate and equivalent channel
with antennas at the transmitter and each of the receivers by
multiplying each of the receive vectors by .
The new channel takes the following form:

(53)

where there is a matrix power constraint
on the input vector , and additive real Gaussian noise vectors
with covariance matrices . As this
transformation is invertible, the capacity region of the interme-
diate channel is exactly the same as that of the original BC.

To accommodate future calculations, we define the sub ma-
trices: , and of sizes
and , respectively, such that

Note that and are symmetric and positive semidefinite.
We now recall that we assumed that is not full ranked and

that the first values on the diagonal of are zero and
the rest are strictly positive. Therefore, no signal will be trans-
mitted through the first input elements of the intermediate
channel (53). Notice that the users on the receiving ends, receive
pure channel noise on the first receiving antennas. Hence,
each user can use the signal on first antennas to cancel
out the effect of the noise on the rest of the antennas such that

the resultant accumulated noise in the first antennas will
be de-correlated from that of the other antennas. Hence, we
can define a second intermediate channel such that

(54)

where

and where the third equality follows from the fact that no signal
is sent through the first transmit antennas. Again, since the
transformation is invertible, the capacity region of the channel
in (54) is identical to that of (53) and to that of the original
ADBC/AMBC. Furthermore, the noise is still Gaussian and the
matrix power constraint remains .

One can verify that the resultant noise covariance at the th
output of channel (54) is given by

However, because the noise vectors are Gaussian, the fact that
the noise at the first receive antennas (at each user) are un-
correlated with the noise at the other antennas means that the
first channel output signals are statistically independent
of the other output signals. Moreover, since only the latter

signals carry the information, the decoder can disregard the
first receive antenna signals for each user without
suffering any degradation in the code’s performance (because
these signals have no effect on the decision made by the ML or
maximum a posteriori probability (MAP) decoder).

Thus, we define a new equivalent AMBC with only
transmit antennas such that

(55)

where and where is a vector of
size and a full ranked input covariance constraint

. The additive noise is a real Gaussian vector with
a covariance matrix .

As removing the first receive antennas did not cause any
degradation in performance, it is clear that any codebook that
was designed for channel (54) can be modified (chop off the first

channel inputs) to work in channel (55) with the same results.
It is also clear that every codebook that was designed to work in
(55), will also work, with some minor modifications (pad with
zeros the first inputs), in the intermediate channel (54)
with the exact same results. Therefore, (55) and (54) have the
same capacity region and hence our equivalent channel (55) will
have the same capacity region as the original ADBC/AMBC.

Finally, we need to show that if , then
. Assume that indeed . It

is easily shown that where are the noise
covariances of the intermediate channel (53). We will need to
show that . For that purpose,
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we define . Note that is the estimation error
of the optimal minimum mean-squared eror (MMSE) estimator
of the last elements of the noise vector given the first
elements of the vector . We now write as follows:

As , the last summand in the last equality is
semidefinite positive. Furthermore, is the
covariance matrix of the estimation error of the optimal esti-
mator of the last elements of the noise vector given the
first elements of the vector while is
a covariance matrix of an estimation error of a nonoptimal es-
timator. Therefore,
and we conclude that if , then

.

APPENDIX II
PROOF OF LEMMA 3

In order to prove this statement, we introduce the following
lemma:

Lemma 8: Assume that

1) If then for every , there
exists an such that

2) If , then for every ,
there exists an such that

3) for all
.

Proof: If , then we can
find positive semidefinite matrices such that indeed

(defined in (5)) and such that
. By replacing and with

and where and by relying on the
fact that if and , it is easy
to obtain the first result. Note that our new set of matrices still
observes the covariance constraint . The proof of the second
statement is almost identical but instead, we replace and

with and . The last statement is easily
proved by recursively using the first statement in an increasing
order of users . The last user’s rate, ,
can be arbitrarily reduced by replacing with where

.

We can now turn to prove Lemma 3.

Proof: We use induction on the number of receiving users
. The case of is a single-user channel with a noise

covariance matrix . If, in the single-user channel
, then (channel capacity) and, therefore,

there is a scalar such that .
Next, we assume that the statement is correct for users,

where and prove that it must be true for users.
We assume that and
distinguish between two cases:

Case 1: In the -user channel

. In this case, we choose the rate vector
where

(the set is not empty because
and as is a closed set, the maximum

exists). is an optimal Gaussian rate vector as otherwise, we
could have found a rate vector

with and with a strict inequality for some . By
iteratively using the first statement of Lemma 8 on , we could
have shown that there is a vector
such that . However, as this implies that

(in contradiction to the definition of ), we conclude that
is indeed an optimal Gaussian rate vector. Finally, is strictly
smaller than as, otherwise, by the third state-
ment of Lemma 8 we would have had

.

Case 2: In the -user channel

. By our induction assumption we know
that there must exist an optimal Gaussian rate vector

in the -user channel such that
. Therefore, we choose

The fact that exists in is readily shown
by using the same choice of realizing matrices as in
the -user channel and . Furthermore,

is an optimal Guassian rate vector
in the -user channel as, otherwise, we could have used the
second statement of Lemma 8 to show that is
not an optimal Gaussian rate vector in the -user channel.
As we assume that is strictly larger than , the proof is
complete.

APPENDIX III
EXTENSION OF LEMMA 8 TO THE AMBC CASE

As our proof of Lemma 8 does not depend on the degraded-
ness of the noise covariance matrices , we can automatically
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extend it to the AMBC case. The following lemma and corollary
formalize this extension.

Lemma 9: Let be an -user permutation function. If

and for some , then, for every
, there exists an , such that

and

where

otherwise

otherwise.

Proof: The proof is identical to the proofs of
the first and second statements in Lemma 8 where
the functions are replaced by

.

Corollary 5: Define the rate vector and
let be any rate vector such that

. Then we have the following.
1) If , then

.
2) If , then .

Proof: The proof of the first statement is a simple result of
a recursive application of Lemma 9. To prove the second state-
ment, we note that as is convex, it is suffi-
cient to show that for all

Moreover, as every point in is a convex com-
bination of points in , we need only to
show that if

then

However, this is a trivial case of the first statement.

APPENDIX IV
PROOF OF LEMMA 5

As the optimization problem in (11) is not convex, we may
not assume automatically that the KKT conditions apply in this

case. Therefore, we must make sure that a set of CQs hold here
such that the existence of the KKT conditions is guarantied.
Before we examine the appropriate CQs, we first rewrite the
problem in (11) in a general form, using the same notation as
in [2], and establish a weaker set of conditions (the Fritz John
conditions), instead of the KKT conditions

minimize

subject to

where the vector is created by the con-
catenation of the rows of through .

is the objective function and
are the inequality

constraints. The set is the set of vectors over which the opti-
mization is done and is given by
where for

row concatenation of

and where

row concatenation of

As and are continuously differentiable over an open set
that contains , the enhanced Fritz John optimality conditions
[2, Sec. 5.2, pp. 281–287] hold here (in [2], and are required
to be continuously differentiable over . However, the
proof of these conditions goes through with no modification if

and are continuously differentiable over an open set that
contains ). Therefore, for a local minimum, , we can write

(56)

where for all and where is
the normal cone of at (see [2, Sec. 4.6, pp. 248–254]). As

and are nonempty convex sets such that
is not empty (where is the relative

interior of the set as defined in [4, p. 23]), we can write (see
[2, Problem 4.23, p. 267])

where is the polar cone of the tangent cone of at
denoted by (see [2, Sec. 4.6, pp. 248–254]) and the

second equality is due to the convexity of the sets and
(and hence, is a regular point with respect to these sets). The
sum of two vector sets and is defined as

and .
In order to characterize the normal cones and tangent

cones in our case, we first need to define the zero eigen-
value matrix . Consider a positive semidefinite matrix

of size and let denote the rank of (i.e.,
). Furthermore, let be the eigenvectors
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of such that for , correspond to
zero eigenvalues. Then, . Note
that is a matrix of size . Assume that

is the row concatenation of the semidefinite matrices
and is the row concatenation of the sym-

metric matrices . It is not difficult to show that
if then

and if then , where

we define .
As the sets and are convex, we have

and

(i.e., is a regular point). Consequently, one can show that

row concatenation of the negative semidefinite

matrices

and

row concatenation of the positive semidefinite

matrices

where is defined as the set of all vectors created by the row
concatenation of symmetric matrices of size (i.e.,

row concatenation of a
symmetric matrix ).

As the right-hand side of (56) is a row concatenation of sym-
metric matrices, we can write

or alternatively

row concatenation of

for some set of positive semidefinite matrices
such that for

. Equation (12) is simply a restatement of the
preceding equation by assigning the appropriate objective
function and the inequality constraints, assigning
and where for and .

To complete the proof we need to show that (56) holds with
. For that purpose, we will use the fact that every point

in is regular (as is nonempty and convex, see [2, Sec. 4.6])
and we will show that the constraint qualifications denoted by
CQ5a in [2, Sec. 5.4, pp. 248–254] hold. More specifically, we
will show that there exists a point

such that (where the
equality is a direct result of Proposition
4.6.3 in [2]).

We now translate these CQs to our case. Let

for some choice of scalars and assume
that the local minimum is the row concatenation of the
matrices and is the row concatenation of the
matrices . We need to show that there exists a
set of matrices such that

1) if , then for
every choice of scalars such that ;

2) if , then for every choice
of scalars such that ;

3)

The first two items ensure that the row concatenation of
lie in and the last ensures that

.
For that purpose, we suggest a set of matrices

of the form

(57)
for some . We begin by checking
the first condition. As is a linear combination of orthogonal
eigenvectors corresponding to null eigenvalues of , we can
write

As , it is clear from the preceding
equation that . Assume that for some we
get . This can only occur if .
This implies that . However,
we assume that , and therefore, for any

. Thus, we have proved that the first condition holds for any
choice of .

To prove that the second condition holds for ,
we note that when

for every choice of such that .
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Next, we need to show that we can choose the scalars
such that the third condition is met. Using the explicit expres-
sion for the rate gradients (13), we can rewrite the directional
gradient of the th rate as follows:

In general, we observe that the expression above for the th
rate depends only on , or alternatively, on .
Therefore, we will set the values of recursively such that
will be a function of . We observe that
for , the first summand in the last equality in the above
expression does not exist. Furthermore, note that as is
positive semidefinite and nonzero (this is one of the assumptions
of the lemma) and as is strictly positive
definite, the last summand is always positive and could be made
arbitrarily large by choosing to be large enough. Therefore,
we choose to be large enough such that the entire expression
is positive for . For , again, the last summand can
be made arbitrarily large by choosing to be large enough.
Thus, we can recursively choose such that this expression is
positive for all .

APPENDIX V
PROOF OF (19) AND (20)

In order to prove (19) and (20) we rely on the following
lemma.

Lemma 10: Let and be positive semidefinite
matrices such that and let
be strictly positive definite matrices . If for
all

(58)

for some , then we can find a set of
matrices such that

and such that for all

(59)

Furthermore

Before proving the lemma we first present and prove two aux-
iliary results.

Lemma 11: Let and be symmetric
matrices such that and let be a strictly positive
scalar. Then the following statements hold:

1) where
;

2) .
Proof: To prove the first statement, we will show that

where is as defined in the first statement. For that purpose
we write

where in and we used .
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We can now prove the second statement. As

we can write

where, once again, in we used .

Lemma 12: Let and
be symmetric matrices such that .

If for some scalar

then the following two statements hold:

1) for some satisfying
.

2)

Proof: Define . As ,
we know that . As and

, we have
. Therefore, by choosing

we have and we can write

By the above equation we may write

We now turn to prove Lemma 10.

Proof: For brevity, we rewrite expression (58) with some
notational modifications. For define

(60)

By (58), we have

(61)

We need to show that

(62)

for some matrices such that and such
that . Furthermore, we need to show that
for these matrices, , we have

(63)
We use induction on and begin by exploring (60) and (61)

for . As and as , by Lemma 11,
we can replace with where .
Furthermore, by the same lemma we have

Since , by Lemma 12, can be replaced by
such that and in addition

and, therefore, (62) holds for and (63) holds for .
Next, we assume that (62) holds for for some

with matrices such that
and such that

and prove that (62) must hold for and (63)
holds for with matrices such
that and such that

. For that purpose, we define

(64)

As and as , we can use Lemma
11 to rewrite the expression for in (60) as follows:

(65)

where and where . How-

ever, by (64) and (60), we may write . Furthermore,
by our induction assumption, (62) holds for and, there-
fore, we may write

(66)
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Thus, by (66), (65), (60), and (61) we may write

As and as , we can use Lemma 12 to rewrite
the above expression as follows:

for some such that . Further-
more, by the same lemma we have

and thus we have shown that (62) holds for
and that (63) holds for .
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