Energy-efficiency of MIMO and Cooperative MIMO Techniques in Sensor Networks Author: Shuguang Cui, Andrea J. Goldsmith, Ahmad Bahai

Yizheng Liao yzliao@stanford.edu

Electrical Engineering Department Stanford University

March-5-2012

Outline

[Introduction](#page-2-0)

[System Model](#page-3-0)

[Fixed-rate System with BPSK Modulation](#page-7-0)

[Variable-rate Systems](#page-13-0)

[MIMO with Multi-node Cooperation](#page-19-0)

[Conclusion](#page-30-0)

Introduction

- \blacktriangleright In sensor networks, most sensors are powered by batteries.
- \triangleright Replacement of batteries is difficult and expensive.
- \blacktriangleright Energy-efficient transmission schemes are needed for data transfer.
- \triangleright MIMO has been showed to achieve higher data rate under the same transmit power budget and BER performance requirements as SISO system.
- \triangleright Alternatively, for the same data rate, MIMO requires less transmission energy.
- \blacktriangleright In sensor network, the total energy consumption is a summation of the transmission energy and the circuit energy.
- \triangleright Our goal: Optimize both parts.

System Model

Figure: Transmitter Circuit Blocks(Analog)

Figure: Receiver Circuit Blocks(Analog)

- \blacktriangleright The system is uncoded.
- \triangleright Local oscillator is shared among all the antenna paths.
- \blacktriangleright For SISO, $M_t = M_r = 1$.
- \triangleright Two power consumption along the signal path:
	- power consumption of all the power amplifiers P_{PA}
	- power consumption of all other circuit blocks P_c
- \triangleright The Alamouti code is used in this paper.

Power consumption of all the power amplifiers P_{PA}

$$
P_{PA} = (1+\alpha)\bar{E}_b R_b \frac{(4\pi d)^2}{G_t G_r \lambda^2} M_l N_f \tag{1}
$$

where

- \blacktriangleright $\bar{E_b}$ is the required energy per bit at the receiver for a given BER requirement
- \blacktriangleright R_b is the bit rate
- \blacktriangleright G_t and G_r are the antenna gain at transmitter and receiver
- \triangleright λ is the carrier bandwidth
- \blacktriangleright M_l is the link margin compensating the hardware process variations and other additive background noise or interference
- $\blacktriangleright N_f = \frac{N_r}{N_0}$ $\frac{N_r}{N_0}$ is the receiver noise figure with the single-sided themal noise PSD at room temperature N_0 and the PSD of the total effective noise at the receiver input N_r
- $\blacktriangleright\ \alpha=\frac{\xi}{\eta}-1$ with η the drain efficiency of the RF power amplifier and ξ the Peak to Average power ratio (PAR).

Power consumption of all other circuit blocks P_c

$$
P_c \approx M_t(P_{DAC} + P_{mix} + P_{filt}) + 2P_{syn} + M_r(P_{LNA} + P_{mix} + P_{IFA} + P_{filt} + P_{ADC})
$$
(2)

$$
P_{DAC} \approx \beta \left(\frac{1}{2} V_{dd} I_0 (2^{n_1} - 1) + n_1 C_p (2B + f_{cor}) V_{dd}^2 \right)
$$
 (3)

$$
P_{ADC} \approx \frac{3V_{dd}^2 L_{min}(2B + f_{cor})}{10^{-0.1525n_2 + 4.838}} \tag{4}
$$

where

- \blacktriangleright V_{dd} is the power supply
- I_0 is the unit current source corresponding to the LSB
- \triangleright n_1 and n_2 are the number of significant bits at the DAC and the ADC
- \blacktriangleright C_p is the parasitic capacitance
- \blacktriangleright f_{cor} is the corner frequency
- \blacktriangleright L_{min} is the minimum channel length for the given CMOS technology

Fixed-rate System with BPSK Modulation: Alamouti 2×1

- ► For 2×1 MISO: scalar fading matrix $\mathbf{H} = [h_1 \quad h_2]$.
- \triangleright For SISO: $H = [h_1]$
- \blacktriangleright Instantaneous received SNR $\gamma_b = \frac{||\mathbf{H}||^2_F}{M_t}$ $\frac{\bar{E_b}}{N_0}$

$$
\bar{P}_b = \mathbf{E}_{\mathbf{H}} \left[Q \left(\sqrt{2\gamma_b} \right) \right]
$$
\n
$$
\leq \left(\frac{\bar{E}_b}{M_t N_0} \right) \text{ since Chernoff bound}
$$
\n
$$
\bar{E}_b \leq \frac{M_t N_0}{\bar{P}_b^{1/M_t}}
$$
\n(6)

$$
E_{bt} = (P_{PA} + P_c)/R_b \tag{7}
$$

$$
\leq (1+\alpha)\frac{M_t N_0}{\bar{P}_b^{1/M_t}} \times \frac{(4\pi d)^2}{G_t G_r \lambda^2} M_l N_f + P_c/R_b \tag{8}
$$

Figure: Transmission energy consumption per bit over d

Figure: Transmission energy consumption per bit over d , MISO v.s. SISO

Figure: Transmission energy consumption per bit over d , MISO v.s. SISO

Figure: Transmission energy consumption per bit over d , MISO bound v.s. SISO bound

Fixed-rate System with BPSK Modulation: Alamouti 2×2

►
$$
\mathbf{H} = \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \end{bmatrix}
$$

▶ Diversity order: 4; Array gain: 2.

Figure: Total energy consumption over d , MIMO v.s. SISO

Variable-rate Systems

- \triangleright Optimal strategy: Operate on a multi-mode basis
- \blacktriangleright Deployment of sleep mode
- ▶ Optimize transceiver spends time $T_{on} \leq T$
- \blacktriangleright In MQAM, $b = \frac{L}{BT}$ $_{BTon}$
- In Large constellation sizes allow us to decrease T_0n to reduce the circuit energy consumption $E_c = P_c T_{on}$.

$$
\bar{P}_b \approx \mathbf{E}_{\mathbf{H}} \left[\frac{4}{b} \left(1 - \frac{1}{2^{\frac{b}{2}}} \right) Q \left(\sqrt{\frac{3b}{M - 1}} \gamma_b \right) \right] \text{ for } b \ge 2 \qquad (9)
$$

$$
\approx \mathbf{E}_{\mathbf{H}} \left[Q \left(\sqrt{2\gamma_b} \right) \right] \text{ for } b = 1 \qquad (10)
$$

where $M=2^b.$ Similar with the fixed-rate system, we have

$$
E_{bt} = (P_{PA} + P_c)/R_b \tag{11}
$$

$$
= (1+\alpha)\bar{E}_b \times \frac{(4\pi d)^2}{G_t G_r \lambda^2} M_l N_f + P_c T_{on}/L \tag{12}
$$

$$
\leq \frac{2}{3}(1+\alpha)\left(\frac{\bar{P}_b}{4}\right)^{-\frac{1}{M_t}}\frac{2^b-1}{b^{\frac{1}{M_t}+1}}M_tN_0\frac{(4\pi d)^2}{G_tG_r\lambda^2}M_tN_f+\frac{P_cT_{on}}{L}(13)
$$

where $T_{on}=\frac{L}{bF}$ bB

Figure: Total Energy consumption over b , MISO 2x1

Figure: Optimized total energy consumption over d , MISO v.s. SISO

Figure: Optimized total energy consumption over d , MIMO v.s. SISO

Figure: Total power consumption over d , the optimized system v.s. the unoptimized system

MIMO with Multi-node Cooperation

Figure: Information Flow in a sensor network

Trade-off:

- \blacktriangleright Local data exchange
- \blacktriangleright Transmission delay
- $\blacktriangleright M_t$ transmitting nodes and each has N_i bits to transmit
- M_r receiving nodes (one destination node and $M_r 1$ assisting nodes)
- \blacktriangleright The energy cost per bit or local information flow on the Tx side is E_i^t
- \blacktriangleright The energy cost per bit or local information flow on the Rx side is E_i^r
- \blacktriangleright The energy cost per bit for the MIMO long-haul transmission is E_{b}^{r}
- \triangleright The energy cost per bit for the SISO long-haul transmission in non-cooperative approach is E^0_i

Total Energy

The total energy consumption for the non-cooperative approach:

$$
E_{tra} = \sum_{i=1}^{M_t} N_i E_i^0 \tag{14}
$$

The energy of cooperative approach:

$$
E_{MIMO} = \sum_{i=1}^{M_t} N_i E_i^t + E_b^r \sum_{i=1}^{M_t} N_i + \sum_{j=1}^{M_r - 1} E_j^r n_r N_s
$$
 (15)
where
$$
N_s = \frac{\sum_{i=1}^{M_t} N_i}{b_m}
$$

Total Delay

For non-cooperative approach:

$$
T_{tra} = \sum_{i=1}^{M_t} \frac{N_i}{b_i^0} T_s \tag{16}
$$

where $T_s \approx 1/B$. For cooperative approach:

$$
T_{MIMO} = T_s \left(\sum_{i=1}^{M_t} \frac{N_i}{b_i^t} + \frac{\sum_{i=1}^{M_t} N_i}{b_m} + \sum_{j=1}^{M_r - 1} \frac{n_r N_s}{b_j^r} \right) \tag{17}
$$

MISO case

Figure: Total energy consumption over d (MISO)

MISO case

Figure: Total delay over d (MISO)

SIMO case

Figure: Total energy consumption over d (SIMO)

SIMO case

Figure: Total delay over d (SIMO)

MIMO case

Figure: Total energy consumption over d (MIMO)

MIMO case

Figure: Total energy consumption over d (MIMO v.s. MISO)

MIMO case

Figure: Total delay over d (MIMO)

- \triangleright Traditional view that MIMO are more energy-efficient than SISO is misleading when we consider both the transmission energy and the circuit energy consumptions.
- \triangleright In short range, the SISO systems outperform MIMO system on the respect of energy efficiency.
- \triangleright With the optimization of constellation size, MIMO can achieve better performances on the total energy consumption and the total delay.