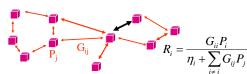

EE360: Lecture 9 Outline Resource Allocation in Ad Hoc Nets

- Announcements
 - Paper summaries due next Wednesday
- Overview of resource allocation in ad-hoc networks
- Cross-layer adaptation
- Distributed power control
- Joint scheduling and power control for wireless ad hoc networks (Haleh Tabrizi)
- Adaptation and interference (wideband CDMA)
- Adaptation via game theory (Manas Deb)

Adaptive Techniques for Wireless Ad-Hoc Networks

- Network is dynamic (links change, nodes move around)
- Adaptive techniques can adjust to and exploit variations
- · Adaptivity can take place at all levels of the protocol stack
- Negative interactions between layer adaptation can occur

What to adapt, and to what?


- OoS
 - Adapts to application needs, network/link conditions, energy/power constraints, ...
- Routing
 - Adapts to topology changes, link changes, user demands, congestion, ...
- Transmission scheme (power, rate, coding, ...)
 - Adapts to channel, interference, application requirements, throughput/delay constraints,...

Adapting requires information exchange across layers and should happen on different time scales

Bottom-Up View: Link Layer Impact

- "Connectivity" determines everything (MAC, routing, etc.)
 - Link SINR and the transmit/receive strategy determine connectivity
 - Can change connectivity via link adaptation
- Link layer techniques (MUD, SIC, smart antennas) can improve MAC and overall capacity by reducing interference
- Link layer techniques enable new throughput/delay tradeoffs
 - Hierarchical coding removes the effect of burstiness on throughput
 - Power control can be used to meet delay constraints

Power Control Adaptation

- Each node generates independent data.
- Source-destination pairs are chosen at random.
- Topology is dynamic (link gain Gis time-varying)
- ullet Different link SIRs based on channel gains G_{ij}
- Power control used to maintain a target Ri value

Power Control for Fixed Channels

- Seminal work by Foschini/Miljanic [1993]
- Assume each node has an SIR constraint

$$R_i = \frac{G_{ii}P_i}{\eta_i + \sum_{i \neq i} G_{ij}P_j} \ge \gamma_i \qquad (I - F)P + u \ge 0, \quad P \ge 0$$

• Write the set of constraints in matrix form

$$F_{ij} = \begin{cases} 0, & i = j \\ \frac{\gamma_i G_{ij}}{G_{ii}}, & i \neq j \end{cases} \qquad \mathbf{u} = \begin{bmatrix} \frac{\gamma_1 \eta_1}{G_{11}}, \dots, \frac{\gamma_N \eta_N}{G_{NN}} \end{bmatrix}^T$$
Scaled Interferer Gain Scaled Noise

1

Optimality and Stability

- Then if ρ_F <1 then \exists a unique solution to $P^* = (I F)^{\text{-}1} u$
- P* is the global optimal solution
- Iterative power control algorithms

Centralized: P(k+1) = FP(k) + u

Distributed: $P_i(k+1) = \frac{\gamma_i}{R_i(k)} P_i(k)$

• Can define performance based on distribution of R:

What if the Channel is Random?

- Average SIR
- Outage Probability
- Average BER
- The standard F-M algorithm overshoots on average

$$E[\log R_i] = \log \gamma_i \Longrightarrow ER_i \ge \gamma_i$$

• How to define optimality if network is time-varying?

Can Consider A New SIR Constraint

$$R_{i} = \frac{G_{ii}P_{i}}{\eta_{i} + \sum_{i \neq j} G_{ij}P_{j}} \ge \gamma_{i} \quad \Leftarrow \text{Original constraint}$$

$$(\longrightarrow)] \quad \Leftarrow \text{Multiply out and}$$

$$\overline{F}_{ij} = \begin{cases} 0, & i = j \\ \gamma_i E[G_{ij}], & i \neq j \end{cases} \quad \overline{u} = \left[\frac{\gamma_i \eta_i}{E[G_{11}]}, \dots, \frac{\gamma_N \eta_N}{E[G_{NN}]}\right]^T$$

Same form as SIR constraint in F-M for fixed channels

New Criterion for Optimality

- If ρ_F <1 then exists a global optimal solution $\overline{P}^* = (I \overline{F})^1 \overline{u}$
- For the SIR constraint

$$\frac{E[G_{ii}P_i]}{E\left[\eta_i + \sum_{j \neq i} G_{ij}P_j\right]} = \gamma_i$$

• Can find P* in a distributed manner using stochastic approximation (Robbins-Monro)

Robbins-Monro algorithm

$$P(k+1) = P(k) - a_k g(P(k)) + a_k \varepsilon_k$$

Where ε_{l} is a noise term

$$\varepsilon_{k} = \left(\overline{F} - F(k)\right)P(k) + \left(\overline{u} - u(k)\right)$$
Step size: $a_{k} \to 0$
$$\sum_{n=1}^{k} a_{k} \to \infty$$

$$\sum_{n=1}^{k} a_{k}^{2} < \infty$$

Under appropriate conditions on \mathcal{E}_k

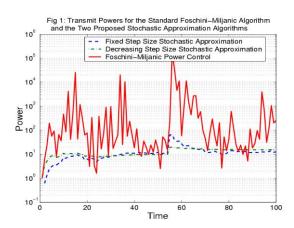
$$P(k) \rightarrow \overline{P}^*$$

Admission Control

- What happens when a new user powers up?
 - More interference added to the system
 - The optimal power vector will moveSystem may become infeasible
- Admission control objectives
 - Protect current user's with a "protection margin"
 - Reject the new user if the system is unstable
 - Maintain distributed nature of the algorithm

Fixed Step Size Algorithm Properties

• Have non-stationary equilibria


• So cannot allow $a_k \rightarrow 0$

Step size:
$$a_k = a$$
 $\sum_{n=1}^k a_k \to \infty$ $\sum_{n=1}^k a_k^2 = \infty$

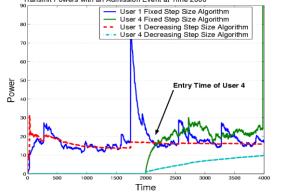
• A fixed step size algorithm will not converge to the optimal power allocation

$$P(k) \Rightarrow \widetilde{P}$$
 where $E[\|P^* - \widetilde{P}\|] = O(a)$

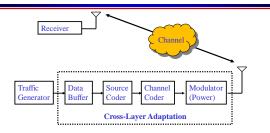
• This error is cost of tracking a moving target

Power Control + ...

- Power control impacts multiple layers of the protocol stack
- Power control affects interference/SINR, which other users react to
- Useful to combine power control with other adaptive protocols
 - Adaptive routing and/or scheduling (Haleh)
 - Adaptive modulation and coding
 - Adaptive retransmissions
 - End-to-end QoS
 - ...


Example: i.i.d. Fading Channel

- Suppose the network consists of 3 nodes
- Each link in the network is an independent exponential random variable


$${}_{E[G]} = \begin{pmatrix} 1 & .0375 & .02 \\ .0375 & 1 & .04 \\ .02 & .04 & 1 \end{pmatrix} \quad \gamma_i = 5 \quad \eta_i = 1 \quad \forall i$$

• Note that ρ_F =.33 so we should expect this network to be fairly stable

Fig. 3 Comparision of the Stand and Modified Stochastic Approximations Algorithms: Transmit Powers with an Admission Event at Time 2000

Multiuser Adaptation

Channel interference is responsive to the crosslayer adaptation of each user

Multiuser Problem Formulation

- Optimize cross-layer adaptation in a multiuser setting
- Users interact through interference
 - Creates a "Chicken and Egg" control problem
 - Want an optimal and stable equilibrium state and adaptation for the system of users
- The key is to find a tractable stochastic process to describe the interference

Interference Models

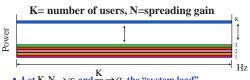
- Jointly model the state space of every mobile in the system
 - Problem: State space grows exponentially
- Assume unresponsive interference
 - Avoids the "Chicken and Egg" control issue
 - Problem: Unresponsive interference models provide misleading results
- Approximations use mean-field approach
 - Model aggregate behavior as an average
 - Can prove this is optimal in some cases

Optimization in the Wideband Limit

- Want to find optimal multi-user cross-layer adaptation for a given performance metric, subject to QoS constraints
- · Approximate the network dynamics with wideband limit
- Optimize the control in the wideband limit
- Check convergence and uniqueness to ensure the solution is a good approximation to a finite bandwidth system

Special case of using mean field theorems

Linear Multi-User Receiver


 Assume each of K mobiles is assigned a N-length random spreading sequence

$$S_{i} = \frac{1}{\sqrt{N}} \{V_{i1}, \dots, V_{iN}\}$$

$$SIR_{K}(i, t) = \frac{(c_{i}^{T} S_{i})^{2} a_{i}(t) z_{i}(t)}{(c_{i}^{T} c_{i}) \sigma^{2} + \sum_{j \neq i} (c_{i}^{T} S_{j})^{2} a_{j}(t) z_{j}(t)}$$

 The receiver c_i takes different values for different structures (MMSE, de-correlator, etc.)

CDMA Wideband Limit

- Let K, N $\rightarrow \infty$ and $\frac{K}{N} \rightarrow \alpha$ the "system load"
- Previous research has proved convergence of the SIR in the wideband limit [Tse and Hanly 1999,2001]
- Can apply a wideband approximation to the stochastic process describing a CDMA system and the corresponding <u>optimal control problem</u>

Equilibrium in the Wideband Limit

- For any K, N, the system state vector $\Pi_{\kappa}(t)$ is the fraction of users in each state
- Define $P(\Pi_K(t), g)$ as the single user transition matrix
- In the wideband limit we have deterministic nonlinear dynamics for the system state

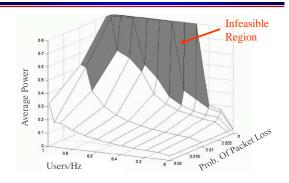
$$\pi(t) = \lim_{K, N \to \infty} \Pi_K(t)$$
 and $\pi(t+1) = \pi(t) P(\pi(t), g)$

• Furthermore $\pi = \pi P(\pi, g)$ has a unique fixed point

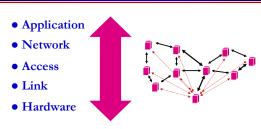
Wideband Optimal Control Problem

$$\min_{g} \pi(g) r(g)^T$$

subject to:


$$\pi(g)P(g,\pi(g)) = \pi(g), \sum \pi(g) = 1, f(\pi) \le \alpha$$

- Very similar to the single user optimization
- The non-linear constraint can introduce significant theoretical and computational complications
- The non-linear program is not convex
 - Can show that it can be solved by a sequence of linear programs


Example: Power Adaptation With Deadline Constrained Traffic

- Assume deadline sensitive data (100ms)
- 50 km/h Microcell (same channel as before)
- Minimize average transmission power subject to a deadline constraint
- Assume we have a matched filter receiver
- What happens as system load increases?
 - Let "number of users per Hz" vary between 0 and 1

Power vs. System Load vs. Deadline Constraint

Crosslayer Design in Ad-Hoc Wireless Networks

Substantial gains in throughput, efficiency, and end-to-end performance from cross-layer design

Crosslayer Design

- Hardware
- Link
- Access

Network Application

Delay Constraints Rate Requirements **Energy Constraints** Mobility

Optimize and adapt across design layers Provide robustness to uncertainty

Crosslayer Adaptation

- Application Layer
 - Design optimization criterionData prioritization

 - Adaptive QoS
- Network Layer Adaptive routing
- **MAC** Layer
 - Access control
 MUD/interference cancellation/smart antennas
- - Adaptive rate, coding, power, framing, etc.
 Adaptive retransmission/hierarchical coding

Link, MAC, and network have the most obvious synergies, but the application layer dictates the optimization criterion

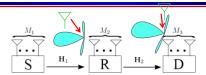
Why a crosslayer design?

- The technical challenges of future mobile networks cannot be met with a layered design approach.
- QoS cannot be provided unless it is supported across all layers of the network.
 - The application must adapt to the underlying channel and network characteristics.
 - The network and link must adapt to the application requirements
- Interactions across network layers must be understood and exploited.

Route dessemination

- Route computed at centralized node
 - Most efficient route computation.
 - Can't adapt to fast topology changes.
 - BW required to collect and desseminate information
- Distributed route computation
 - Nodes send connectivity information to local nodes.
 - Nodes determine routes based on this local information.
 - Adapts locally but not globally.
- Nodes exchange local routing tables
 - Node determines next hop based on some metric.
 - Deals well with connectivity dynamics.
 - Routing loops common.

Adaptive Routing

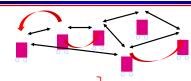

- Routing establishes the mechanism by which a packet traverses the network
- As the network changes, the routes should be updated to reflect network dynamics
- Updating the route can entail significant overhead.

Reliability

- Packet acknowledgements needed
 - May be lost on reverse link
 - Should negative ACKs be used.
- Combined ARQ and coding
 - Retransmissions cause delay
 - Coding may reduce data rate
 - Balance may be adaptive
- Hop-by-hop acknowledgements
 - Explicit acknowledgements
 - Echo acknowledgements

 - Transmitter listens for forwarded packet
 More likely to experience collisions than a short acknowledgement.
 - Hop-by-hop or end-to-end or both.

MIMO in Ad-Hoc Networks

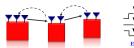

• Antennas can be used for multiplexing, diversity, or interference cancellation

•Cancel M-1 interferers with M antennas

• What metric should be optimized?

Cross-Layer Design

Networks



- Output feedback
- CSI
- Acknowledgements
- Network/traffic information
- Something else

How to use Feedback in Wireless

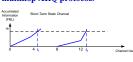
Noisy/Compressed

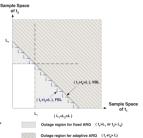
Diversity-Multiplexing-Delay Tradeoffs for MIMO Multihop Networks with ARQ

- · MIMO used to increase data rate or robustness
- Multihop relays used for coverage extension
- ARQ protocol:
 - Can be viewed as 1 bit feedback, or time diversity,
 - Retransmission causes delay (can design ARQ to control delay)
- Diversity multiplexing (delay) tradeoff DMT/DMDT
 - Tradeoff between robustness, throughput, and delay

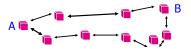
Multihop ARQ Protocols

- Fixed ARQ: fixed window size Maximum allowed ARQ round for ith hop L_i satisfie
- Adaptive ARQ: adaptive window size

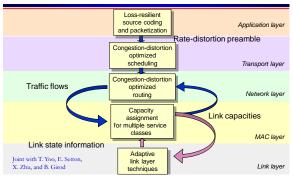




Asymptotic DMDT Optimality

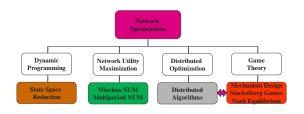

• Theorem: VBL ARQ achieves optimal DMDT in MIMO multihop relay networks in long-term and short-term static channels.

• Proved by cut-set bound · An intuitive explanation by stopping times: VBL ARQ has the smaller outage regions among multihop ARQ protocols

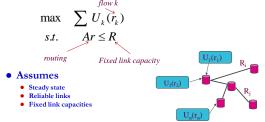


Delay/Throughput/Robustness across Multiple Layers

- Multiple routes through the network can be used for multiplexing or reduced delay/loss
- Application can use single-description or multiple description codes
- Can optimize optimal operating point for these tradeoffs to minimize distortion


Cross-layer protocol design for real-time media

Video streaming performance


Approaches to Cross-Layer Resource Allocation*

*Much prior work is for wired/static networks

Network Utility Maximization

• Maximizes a network utility function

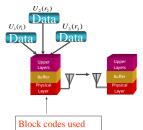
• Dynamics are only in the queues

Wireless NUM

- Extends NUM to random environments
- Network operation as stochastic optimization algorithm

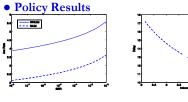
max
$$E[\sum U(r_m(G))]$$

st $E[r(G)] \le E[R(S(G), G)]$


 $E[S(G)] \le \overline{S}$

Example: NUM and Adaptive Modulation

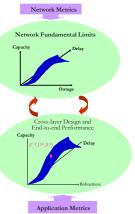
Policies
Information rate r()
Tx power S()
Tx Rate R()
Tx code rate


Policy adapts to
Changing channel conditions (G)
Packet backlog
Historical power usage

WNUM Policies

- Control network resources
- Inputs:
 - Random network channel information G^k
 - Network parameters
 - Other policies
- Outputs:
 - Control parameters
 - Optimized performance, that
 - Meet constraints
- Channel sample driven policies

Rate-Delay-Reliability



Game theory

- Coordinating user actions in a large ad-hoc network can be infeasible
- Distributed control difficult to derive and computationally complex
- Game theory provides a new paradigm
 - Users act to "win" game or reach an equilibrium
 - Users heterogeneous and non-cooperative
 - Local competition can yield optimal outcomes
 - Dynamics impact equilibrium and outcome
 - Adaptation via game theory

Research Areas

- Research Areas
 Fundamental performance limits and tradeoffs
 Node cooperation and cognition
 Adaptive techniques
 Layering and Cross-layer design
 Network/application interface
 End-to-end performance
 optimization and guarantees

Summary

- The dynamic nature of ad-hoc networks indicate that adaptation techniques are necessary and powerful
- Adaptation can transcend all layers of the protocol stack
- · Approaches to optimization include dynamic programming, utility maximization, and game theory
- Network dynamics make centralized/distributed control
- Game theory provides a simple paradigm that can yield near-optimal solutions