
EE360: Lecture 9 Outline 

Resource Allocation in Ad Hoc Nets 
 

 Announcements 

 Paper summaries due next Wednesday 

 Overview of resource allocation in ad-hoc networks 

 Cross-layer adaptation 

 Distributed power control 

 Joint scheduling and power control for wireless ad 

hoc networks (Haleh Tabrizi) 

 Adaptation and interference (wideband CDMA) 

 Adaptation via game theory (Manas Deb) 

 



Adaptive Techniques for 
Wireless Ad-Hoc Networks 

 Network is dynamic (links change, nodes move around) 

 Adaptive techniques can adjust to and exploit variations 

 Adaptivity can take place at all levels of the protocol stack 

 Negative interactions between layer adaptation can occur 



What to adapt, and to what? 

 QoS 
 Adapts to application needs, network/link conditions, 

energy/power constraints, … 
 

 Routing 

 Adapts to topology changes, link changes, user demands, 
congestion, … 
 

 Transmission scheme (power, rate, coding, …) 

 Adapts to channel, interference, application requirements, 
throughput/delay constraints, … 

Adapting requires information exchange across  
layers and should happen on different time scales 



Bottom-Up View: 
Link Layer Impact 

 “Connectivity” determines everything (MAC, routing, etc.) 

 Link SINR and the transmit/receive strategy determine 
connectivity 

 
 Can change connectivity via link adaptation 

 
 

 Link layer techniques (MUD, SIC, smart antennas) can 
improve MAC and overall capacity by reducing interference 
 

 Link layer techniques enable new throughput/delay tradeoffs 

 Hierarchical coding removes the effect of burstiness on 
throughput 

 Power control can be used to meet delay constraints 
 



Power Control Adaptation 

 Each node generates independent data. 
 

 Source-destination pairs are chosen at random. 
 

 Topology is dynamic (link gain Gijs time-varying) 
 

 Different link SIRs based on channel gains Gij 

 Power control used to maintain a target Ri value 
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Power Control for Fixed Channels 

 Seminal work by Foschini/Miljanic [1993] 

 Assume each node has an SIR constraint 

 

 
 

 

 Write the set of constraints in matrix form 
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Optimality and Stability 

 
 Then if rF <1 then  a unique solution to 

 
 

 P* is the global optimal solution 

 Iterative power control algorithms PP* 
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What if the Channel is Random? 

 Can define performance based on distribution of Ri:  

 Average SIR 

 Outage Probability 

 Average BER 
 

 The standard F-M algorithm overshoots on average 

 

 How to define optimality if network is time-varying? 
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 Can Consider A New SIR Constraint 

 Original constraint 
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New Criterion for Optimality 

 If rF<1 then exists a global optimal solution 

 

 For the SIR constraint 

 

 
 

 

 Can find P* in a distributed manner using 

stochastic approximation (Robbins-Monro) 
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Robbins-Monro algorithm 
 

 

  Where ek is a noise term 
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Admission Control 

 What happens when a new user powers up? 

 More interference added to the system 

 The optimal power vector will move 

 System may become infeasible 
 

 Admission control objectives 

 Protect current user’s with a “protection margin” 

 Reject the new user if the system is unstable 

 Maintain distributed nature of the algorithm 

Tracking problem, not an equilibrium problem 



Fixed Step Size Algorithm Properties 

 Have non-stationary equilibria 

  So cannot allow ak  0 

 

 
 

 A fixed step size algorithm will not converge 
to the optimal power allocation 

 

 

 This error is cost of tracking a moving target 
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Example: i.i.d. Fading Channel 

 Suppose the network consists of 3 nodes 
 

 Each link in the network is an independent 
exponential random variable 

 

 

 

 

 Note that rF=.33 so we should expect this 
network to be fairly stable 
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Power Control + … 

 Power control impacts multiple layers of the 

protocol stack 

 Power control affects interference/SINR, which 

other users react to 

 Useful to combine power control with other 

adaptive protocols 

 Adaptive routing and/or scheduling (Haleh) 

 Adaptive modulation and coding 

 Adaptive retransmissions 

 End-to-end QoS 

 … 



Multiuser Adaptation 

Traffic 

Generator 

Data 

Buffer 

Source 

Coder 

Channel 

Coder 

Modulator 

(Power) 

Receiver 

Channel 

Cross-Layer Adaptation 

Channel interference is responsive to the cross-

layer adaptation of each user 



Multiuser Problem Formulation 

 Optimize cross-layer adaptation in a multi-

user setting 
 

 Users interact through interference 
 Creates a “Chicken and Egg” control problem 

 Want an optimal and stable equilibrium state and 
adaptation for the system of users 

 
 

 The key is to find a tractable stochastic 

process to describe the interference 
 



Linear Multi-User Receiver 

 Assume each of K mobiles is assigned a N-length 

random spreading sequence 

 

 

 

The receiver ci takes different values for different 

structures (MMSE, de-correlator, etc.) 
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Interference Models 

 Jointly model the state space of every mobile 
in the system 

 Problem: State space grows exponentially 
  

 Assume unresponsive interference 
 Avoids the “Chicken and Egg” control issue 

 Problem: Unresponsive interference models 
provide misleading results 

  

 Approximations use mean-field approach 
  Model aggregate behavior as an average 

 Can prove this is optimal in some cases 



CDMA Wideband Limit 

•  Let                  and              the “system load” 
 

•  Previous research has proved convergence of the SIR 
in the wideband limit [Tse and Hanly 1999,2001] 
 

• Can apply a wideband approximation to the 
stochastic process describing a CDMA system and the 
corresponding optimal control problem 
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Optimization in the Wideband Limit 

 Want to find optimal multi-user cross-layer adaptation for a 

given performance metric, subject to QoS constraints 
  

 Approximate the network dynamics with wideband limit 
 

 Optimize the control in the wideband limit 
  

 Check convergence and uniqueness to ensure the solution 

is a good approximation to a finite bandwidth system 

Special case of using mean field theorems 



Equilibrium in the Wideband Limit 
 

 For any K, N, the system state vector             is the 
fraction of users in each state  

 

 Define                     as the single user transition 
matrix 
 

 In the wideband limit we have deterministic non-
linear dynamics for the system state  

 

 

 Furthermore                         has a unique fixed point 
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Wideband Optimal Control Problem 

 Very similar to the single user optimization 
 

 The non-linear constraint can introduce significant 
theoretical and computational complications 
 

 The non-linear program is not convex 
 Can show that it can be solved by a sequence of linear programs 

  



  )( ,1)( ),()(,)(

:tosubject

)()(min

fggggPg

grg T

g



Example: Power Adaptation With Deadline 

Constrained Traffic 

 Assume deadline sensitive data (100ms) 
 

 50 km/h Microcell (same channel as before) 
 

 Minimize average transmission power subject to a 

deadline constraint 
 

 Assume we have a matched filter receiver 
 

 What happens as system load increases? 

 Let “number of users per Hz” vary between 0 and 1 



Power vs. System Load  
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Crosslayer Design in Ad-Hoc 
Wireless Networks 

 Application 

 Network 
 

 Access 

 Link 

 Hardware 

 
Substantial gains in throughput, efficiency, and end-to-end 

performance from cross-layer design 



Crosslayer Design 

 Hardware 

 Link 
 

 Access 

 Network 

 Application 

 

Delay Constraints 

Rate Requirements 

Energy Constraints 

Mobility 

Optimize and adapt across design layers 

Provide robustness to uncertainty 



Crosslayer Adaptation 

 Application Layer 
 Design optimization criterion  
 Data prioritization 
 Adaptive QoS 

 Network Layer 
 Adaptive routing 

 MAC Layer 
 Access control 
 MUD/interference cancellation/smart antennas 

 Link Layer 
 Adaptive rate, coding, power, framing, etc. 
 Adaptive retransmission/hierarchical coding 

Link, MAC, and network have the most obvious synergies, 
but the application layer dictates the optimization criterion 



Why a crosslayer design? 

 The technical challenges of future mobile networks 
cannot be met with a layered design approach. 
 

 QoS cannot be provided unless it is supported 
across all layers of the network.  

 The application must adapt to the underlying channel and 
network characteristics. 
 

 The network and link must adapt to the application 
requirements  
 

 Interactions across network layers must be 
understood and exploited. 



Adaptive Routing 

 Routing establishes the mechanism by which a 

packet traverses the network 
 

 As the network changes, the routes should be 

updated to reflect network dynamics 
 

  Updating the route can entail significant 

overhead. 

Source 

Destination 



Route dessemination 

 Route computed at centralized node 
 Most efficient route computation. 
 Can’t adapt to fast topology changes. 
 BW required to collect and desseminate information 

 

 Distributed route computation 

 Nodes send connectivity information to local nodes. 
 Nodes determine routes based on this local information. 
 Adapts locally but not globally.  

 Nodes exchange local routing tables 

 Node determines next hop based on some metric. 
 Deals well with connectivity dynamics. 
 Routing loops common. 

 



Reliability 

 Packet acknowledgements needed 

 May be lost on reverse link 
 Should negative ACKs be used. 

 Combined ARQ and coding 

 Retransmissions cause delay 
 Coding may reduce data rate 
 Balance may be adaptive 

 Hop-by-hop acknowledgements 

 Explicit acknowledgements 
 Echo acknowledgements 

 Transmitter listens for forwarded packet  
 More likely to experience collisions than a short 

acknowledgement. 

 Hop-by-hop or end-to-end or both. 



MIMO in Ad-Hoc Networks 

• Antennas can be used for multiplexing, diversity, or 
interference cancellation 

•Cancel M-1 interferers with M antennas 

• What metric should be optimized? 

Cross-Layer Design 



How to use Feedback in Wireless 

Networks 

 Output feedback 

 CSI 

 Acknowledgements 

 Network/traffic information 

 Something else 

Noisy/Compressed 



Diversity-Multiplexing-Delay Tradeoffs 
for MIMO Multihop Networks with ARQ 

 MIMO used to increase data rate or robustness 

 Multihop relays used for coverage extension 

 ARQ protocol:  

 Can be viewed as 1 bit feedback, or time diversity,  

 Retransmission causes delay (can design ARQ to 
control delay)               

 Diversity multiplexing (delay) tradeoff  - DMT/DMDT 

 Tradeoff between robustness, throughput, and delay 

ARQ  
ARQ  

 H2 
 H1 

Error Prone 

Multiplexing 

Low Pe 

Beamforming 



 Fixed ARQ: fixed window size 

 Maximum allowed ARQ round for ith hop       satisfies  

 Adaptive ARQ: adaptive window size 

 Fixed Block Length (FBL) (block-based feedback, easy synchronization) 

 
 

 

 
 Variable Block Length (VBL) (real time feedback) 

 

 

Multihop ARQ Protocols 
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Asymptotic DMDT Optimality 

 Theorem: VBL ARQ achieves optimal DMDT in MIMO multihop 

relay networks in long-term and short-term static channels. 
 

 Proved by cut-set bound  

 

 An intuitive explanation by  

stopping times: VBL ARQ has 

the smaller outage regions among  

multihop ARQ protocols 
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Delay/Throughput/Robustness 
across Multiple Layers 

 Multiple routes through the network can be used 

for multiplexing or reduced delay/loss 
 

 Application can use single-description or 
multiple description codes 
 

 Can optimize optimal operating point for these 

tradeoffs to minimize distortion 

A 

B 



Application layer 

Network layer 

MAC layer 

Link layer 

Cross-layer protocol design 
for real-time media  

Capacity  

assignment 

for multiple service   

classes  

Congestion-distortion 

optimized 

routing  

Adaptive 

link layer 

techniques  

Loss-resilient 

source coding 

and packetization  

Congestion-distortion 

optimized 

scheduling  

Traffic flows 

Link capacities 

Link state information 

Transport layer 

Rate-distortion preamble 

Joint with T. Yoo, E. Setton,  

X. Zhu, and B. Girod 



Video streaming performance  

3-fold increase 

5 dB 

100 

s 

(logarithmic scale) 1000 



Approaches to Cross-Layer 
Resource Allocation* 

Network  

Optimization 

Dynamic 

Programming 

State Space  

Reduction 

*Much prior work is for wired/static networks 

Distributed  

Optimization 

Distributed 

Algorithms 

Network Utility 

Maximization 

Wireless NUM 

Multiperiod NUM 

Game 

Theory 

Mechanism Design 

Stackelberg Games 

Nash Equilibrium 



Network Utility Maximization 

 Maximizes a network utility function 

 

 

 

 Assumes 
 Steady state 

 Reliable links 

 Fixed link capacities 

 

 Dynamics are only in the queues 
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Wireless NUM 

 Extends NUM to random 

environments 

 Network operation as stochastic 

optimization algorithm 
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WNUM Policies  

 Control network resources 

 Inputs: 

 Random network channel information Gk 

 Network parameters  

 Other policies 

 Outputs:  

 Control parameters 

 Optimized performance, that 

 Meet constraints 

 Channel sample driven policies 



Example: NUM and  

Adaptive Modulation 

 Policies 

 Information rate r() 

 Tx power S() 

 Tx Rate R() 

 Tx code rate  

 Policy adapts to  

 Changing channel 
conditions (G) 

 Packet backlog  

 Historical power usage 

Data 

Data Data 
)( 11 rU

)( 22 rU

)( 33 rU

Physical 
Layer 

Buffer 

Upper 
Layers 

Physical 
Layer 

Buffer 

Upper 
Layers 

Block codes used 



 Rate-Delay-Reliability  

 Policy Results 



Game theory 

 Coordinating user actions in a large ad-hoc 
network can be infeasible 

 

 Distributed control difficult to derive and 
computationally complex 

 

 Game theory provides a new paradigm 
 Users act to “win” game or reach an equilibrium 
 Users heterogeneous and non-cooperative  
 Local competition can yield optimal outcomes 
 Dynamics impact equilibrium and outcome 
 Adaptation via game theory 



Capacity Delay 

Outage 

Capacity 

Delay 

Robustness 

Network Fundamental Limits 

Cross-layer Design and 
End-to-end Performance 

Network Metrics 

Application Metrics 

(C*,D*,R*) 

Fundamental Limits 
of  Wireless Systems 

 
(DARPA Challenge Program) 

Research Areas 
- Fundamental performance limits and 
tradeoffs  
- Node cooperation and cognition 
- Adaptive techniques 
- Layering and Cross-layer design 
- Network/application interface 
- End-to-end performance  
  optimization and guarantees 
 

A 

B C 

D 



Summary 

 The dynamic nature of ad-hoc networks indicate that 

adaptation techniques are necessary and powerful 
 

 Adaptation can transcend all layers of the protocol stack 
 

 Approaches to optimization include dynamic 

programming, utility maximization, and game theory 
 

 Network dynamics make centralized/distributed control 

challenging 
 

 Game theory provides a simple paradigm that can yield 
near-optimal solutions 


