EE360: Lecture 7 Outline **Cellular System Capacity and ASE**

Announcements

Summary due next week

- Capacity
- Area Spectral Efficiency
- Dynamic Resource Allocation

Review of Cellular Lecture

- Design considerations: • Spectral sharing, reuse, cell size
- Evolution: 1G to 2G to 3G to 4G and beyond
- Multiuser Detection in cellular
- MIMO in Cellular
 - Multiuser MIMO/OFDM
 - Multiplexing/diversity/IC tradeoffs
 - Distributed antenna systems
 - Virtual MIMO

Cellular System Capacity

- Shannon Capacity

 - Shannon capacity does no incorporate reuse distance.
 Wyner capacity: capacity of a TDMA systems with joint base station processing
- User Capacity
 - Calculates how many users can be supported for a given performance specification.
 - Results highly dependent on traffic, voice activity, and propagation models.
 - Can be improved through interference reduction techniques.
- Area Spectral Efficiency
 - Capacity per unit area
 - In practice, all techniques have roughly the same capacity for voice, but flexibility of OFDM/MIMO supports more heterogeneous users

Defining Cellular Capacity

- Shannon-theoretic definition
 - Multiuser channels typically assume user coordination and joint encoding/decoding strategies
 - Can an optimal coding strategy be found, or should one be assumed (i.e. TD,FD, or CD)?
 - What base station(s) should users talk to?
 - What assumptions should be made about base station coordination?
 - Should frequency reuse be fixed or optimized?
 - Is capacity defined by uplink or downlink?
 - · Capacity becomes very dependent on propagation model
- Practical capacity definitions (rates or users) • Typically assume a fixed set of system parameters
 - Assumptions differ for different systems: comparison hard
 - Does not provide a performance upper bound

Approaches to Date

- Shannon Capacity
 - TDMA systems with joint base station processing
- Multicell Capacity
 - Rate region per unit area per cell
 - Achievable rates determined via Shannon-theoretic analysis or for practical schemes/constraints
 - Area spectral efficiency is sum of rates per cell
- User Capacity
 - Calculates how many users can be supported for a given performance specification.
 - Results highly dependent on traffic, voice activity, and propagation models.
 - Can be improved through interference reduction techniques. (Gilhousen et. al.)

Wyner Uplink Capacity

· Linear or hexagonal cells

• • •

• Received signal at base station (N total users)

$$Y_{n} = \sum_{k=1}^{K} X_{nk} + \alpha \sum_{n' \in \mathcal{A}_{n}} \sum_{k=1}^{K} X_{n'k} + Z_{n},$$

- Propagation for out-of-cell interference captured by a
- Average power constraint: $E(X_{n,k}^2) \le P$
- Capacity C_N defined as largest achievable rate (N users)

Linear Array

• Theorem: $\lim_{N\to\infty} C_N = C^*(\alpha)$

for

$$C^*(\alpha) \triangleq \frac{1}{2K} \int_0^1 \log\left(1 + \frac{\left(1 + 2\alpha \cos 2\pi\theta\right)^2}{\sigma_0^2}\right) d\theta,$$

$$\sigma_0^2 = \sigma^2 / KP.$$

Optimal scheme uses TDMA within a cell - Users transmit in 1/K timeslots; power KP

Treats co-channel signals as interference:

Results

Channel Reuse in Cellular Systems

Channel Reuse in Cellular Systems

- · Motivation: power falloff with transmission distance
- · Pro: increase system spectral efficiency
- Con: co-channel interference (CCI)
- "Channel": time slot, frequency band, (semi)-orthogonal code

· Cellular Systems with different multiple-access techniques

- CDMA (IS-95, CDMA2000): weak CCI, channel reuse in every cell
- codes designed with a single and narrow autocorrelation peak
- TDMA (GSM), FDMA (AMPS): much stronger CCI
 - a minimum reuse distance required to support target SINR

· Channel reuse: traditionally a fixed system design parameter

Adaptive Channel Reuse

Tradeoff

Large reuse distance reduces CCI
 Small reuse distance increases bandwidth allocation

· Related work

- [Frodigh 92] Propagation model with path-loss only channel assignment based on sub-cell compatibility
- [Horikawa 05] Adaptive guard interval control
 - special case of adaptive channel reuse in TDMA systems

· Current work

- Propagation models incorporating time variation of wireless channels static (AWGN) channel, fast fading and slow fading
- Channel reuse in cooperative cellular systems (network MIMO)
- compare with single base station processing

System Model

Full cooperation leads to fundamental performance limit

· More practical scheme: adjacent base station cooperation

Channel Assignment

 \bullet Intra-cell FDMA, K users per cell total bandwidth in the system K $\cdot Bm$

· Bandwidth allocated to each user

maxium bandwidth Bm, corresponding to channel reuse in each cell
 may opt for a fraction of bandwidth, based on channel strength

 increased reuse distance, reduced CCI & possibly higher rate

Single Base Station Transmission: AWGN

· Mobile close to base station -> strong channel, small reuse distance

• Reuse factor changes $(1 \rightarrow \frac{1}{2})$ at transition distance $d_T = 0.62$ mile

Rayleigh Fast Fading Channel

· Both "sandwiched" by same upper/lower bounds (small gap in between)

Rayleigh Slow Fading Channel

Observations

· Optimal reuse factor random at each distance, also depends on fading • Larger reuse distance $(1/\tau > 2)$ needed when mobiles close to cell edge

Base Station Cooperation: AWGN

 $\mathbf{w} = \left[w_{(i)} \right] = \left| h_{(i)} / \left| h_{(i)} \right| \right|$ · Transmitter beamforming

· optimal for isolated MISO system with per-base power constraint · suboptimal when interference present

· an initial choice to gain insight into system design

Performance Comparison

Observations

· no reuse channel in adjacent cell: to avoid base station serving user and interferer at the same time

• reuse factor 1/2 optimal at all d: suppressing CCI without overly shrinking the bandwidth allocation

• bandwidth reduction (1->1/2) overshadows benefit from cooperation

· Advantage of cooperation over single cell transmission: only prominent when users share the channel; limited with intra-cell TD/FD [Liang 06]

· Remedy: allow more base stations to cooperate

in the extreme case of full cooperation, channel reuse in every cell

Area Spectral Efficiency

- S/I increases with reuse distance.
- For BER fixed, tradeoff between reuse distance and link spectral efficiency (bps/Hz).
- Area Spectral Efficiency: $A_e = \sum R_i / (.25D^2\pi) bps / Hz / Km^2$.

ASE with Adaptive Modulation

- Users adapt their rates (and powers) relative to S/I variation.
- S/I distribution for each user based on propagation and interference models.

 $\gamma_{d} = S_{d} / \sum S_{i}$

- Computed for extreme interference conditions.
 Simulated for average interference conditions.
- The maximum rate R_i for each user in a cell is computed from its S/I distribution.
 For narrowband system use adaptive MQAM analysis

Propagation Model

• Two-slope path loss model:

$$\overline{S_r}(d) = \frac{K}{d^* (1 + d/g)^b} \overline{S_r}$$

- Slow fading model: log-normal shadowing
- Fast fading model: Nakagami-m
 Models Rayleigh and approximates Ricean.
- ASE maximized with reuse distance of one!
 Adaptive modulation compensate for interference

ASE vs. Cell Radius

Distributed Antennas (DAS) in Cellular

- Basic Premise:
- cell
- Distribute BS antennas throughout cell
 Rather than just at the center
- Antennas connect to BS through wireless/wireline links
- Performance benefits
 - Capacity
 - Coverage
 - Power consumption

Average Ergodic Rate

- Assume full CSIT at BS of gains for all antenna ports
- Downlink is a MIMO broadcast channel with full CSIR
- Expected rate is

$$C_{csit}(P) = E_u E_{sh} \left[\log_2 \left(1 + \overline{S} \left(\sum_{I=1}^N \sqrt{\frac{f_i}{D(p_i, u)^{\alpha}}} \right)^2 \right) \right]$$

- Average over user location and shadowing
- DAS optimization
 - Where to place antennas
 - Goal: maximize ergodic rate

• Impact of intercell interference

$$SINR = \frac{\sum_{i=1}^{N} \frac{f_i}{D(p_i, u)^{\alpha}}}{\sum_{j=1}^{6} \sum_{i=1}^{N} \gamma_j \frac{f_j}{D(p_i^j, u)^{\alpha}} + \sigma^2}$$

 γ_j

ð

ğ ğ

Q

Š Š

- is the interference coefficient from cell j
- Autocorrelation of neighboring cell codes for CDMA systems
- Set to 1 for LTE(OFDM) systems with frequency reuse of one.

Interference Effect

Area Spectral Efficiency

• Average user rate/unit bandwidth/unit area (bps/Hz/Km²) • Captures effect of cell size on spectral efficiency and interference

Summary

- Wireless data/multimedia are main drivers for future generations of cellular systems.
 - Killer application unknown; how will cellular users access the Internet; will cellular or WLANs prevail.
- Efficient systems are interference-limited
 - Interference reduction key to high system capacity
- Adaptive techniques in cellular can improve significantly performance and capacity
- MIMO a powerful technique, but impact on outof-cell interference and implementation unknown.

Dynamic Resource Allocation

Allocate resources as user and network conditions change

• Resources:

- Channels
- Bandwidth
- Power
- Rate
- Base stations • Access
- Optimization criteria
 - Minimize blocking (voice only systems)
 - Maximize number of users (multiple classes)
 - Maximize "revenue": utility function
 - Subject to some minimum performance for each user

Dynamic Channel Allocation

- Fixed channel assignments are inefficient
 - Channels in unpopulated cells underutilized
 - Handoff calls frequently dropped
- Channel Borrowing
 - A cell may borrow free channels from neighboring cells
 - Changes frequency reuse plan
- Channel Reservations
 - · Each cell reserves some channels for handoff calls
 - Increases blocking of new calls, but fewer dropped calls
- Dynamic Channel Allocation
 - Rearrange calls to pack in as many users as possible without violating reuse constraints

"DCA is a 2G/4G problem"

• Very high complexity

Variable Rate and Power

- Narrowband systems
 - Vary rate and power (and coding)
 - Optimal power control not obvious
- CDMA systems
 - Vary rate and power (and coding)
 Multiple methods to vary rate (VBR, MC, VC)
 Optimal power control not obvious
- Optimization criteria
 - Maximize throughput/capacity
 - Meet different user requirements (rate, SIR, delay, etc.)
 - Maximize revenue

Multicarrier CDMA

- Multicarrier CDMA combines OFDM and CDMA
- Idea is to use DSSS to spread a narrowband signal and then send each chip over a different subcarrier
 DSSS time operations converted to frequency domain
- Greatly reduces complexity of SS system
 FFT/IFFT replace synchronization and despreading
- More spectrally efficient than CDMA due to the overlapped subcarriers in OFDM
- Multiple users assigned different spreading codes
 Similar interference properties as in CDMA

Rate and Power Control in CDMA*

- Optimize power and rate adaptation in a CDMA system
 Goal is to minimize transmit power
- Each user has a required QoS • Required effective data rate

*Simultaneous Rate and Power Control in Multirate Multimedia CDMA Systems," S. Kandukuri and S. Boyd

System Model: General

- Single cell CDMA
- Uplink multiple access channel
- Different channel gains
- System supports multiple rates

System Model: Parameters

- Parameters
 - N = number of mobiles
 - P_i = power transmitted by mobile i
 - R_i = raw data rate of mobile i
 - W = spread bandwidth
- QoS requirement of mobile i, □_i, is the effective data rate

$$\gamma_i = R_i (1 - P_{ei})$$

System Model: Interference

- Interference between users represented by cross correlations between codes, *C*_{ii}
- Gain of path between mobile i and base station, *L_i*
- Total interfering effect of mobile j on mobile i, G_{ij} is $G_{ij} = L_i C_{ij}$

SIR Model (neglect noise)

$$SIR_i = \frac{G_{ii}P_i}{\sum_{j \neq i} G_{ij}P_j + \eta}$$

$$\beta_i = \left(\frac{E_b}{I_o}\right)_i = \frac{SIR_iW}{R_i}$$

QoS Formula

- Probability of error is a function of \Box_{I} • Formula depends on the modulation scheme
- Simplified P_c expression
- $P_{ei} = \frac{1}{c\beta_i}$ • QoS formula

$$\gamma_i = R_i \left(1 - P_e \left(\frac{SIR_i W}{R_i} \right) \right)$$

Solution

- Objective: Minimize sum of mobile powers subject to QoS requirements of all mobiles
- Technique: Geometric programming
 - A non-convex optimization problem is cast as a convex optimization problem
- Convex optimization
 - Objective and constraints are all convex
 - Can obtain a global optimum or a proof that the set of specifications is infeasible
 - Efficient implementation

Problem Formulation

Minimize 1^TP (sum of powers)

(

Subject to

$$R_i \left(1 - P_e \left(\frac{SIR_iW}{R_i}\right) \\ R_i \le R_{thresh} \\ P \succ 0$$

 $\geq \gamma_i$

Can also add constraints such as $P_i \ge P_{\min}$ $P_i \leq P_{\max}$

Results

Sum of powers transmitted vs interference

Results

QoS vs. interference