EE360: Lecture 7 Outline Cellular System Capacity and ASE

Announcements

Summary due next week

- **Capacity**
- **Area Spectral Efficiency**
- **Dynamic Resource Allocation**

Review of Cellular Lecture

- **Design considerations: Spectral sharing, reuse, cell size**
- **Evolution: 1G to 2G to 3G to 4G and beyond**
- **Multiuser Detection in cellular**
- **MIMO in Cellular**
	- **Multiuser MIMO/OFDM**
	- **Multiplexing/diversity/IC tradeoffs**
	- **Distributed antenna systems**
	- **Virtual MIMO**

Cellular System Capacity

- **Shannon Capacity**
	-
	- **Shannon capacity does no incorporate reuse distance. Wyner capacity: capacity of a TDMA systems with joint base station processing**
- **User Capacity**
	- **Calculates how many users can be supported for a given performance specification.**
	- **Results highly dependent on traffic, voice activity, and propagation models.**
	- **Can be improved through interference reduction techniques.**
- **Area Spectral Efficiency**
	- **Capacity per unit area**
		- *In practice, all techniques have roughly the same capacity for voice, but flexibility of OFDM/MIMO supports more heterogeneous users*

Defining Cellular Capacity

- **Shannon-theoretic definition**
	- **Multiuser channels typically assume user coordination and joint encoding/decoding strategies**
	- **Can an optimal coding strategy be found, or should one be assumed (i.e. TD,FD, or CD)?**
	- **What base station(s) should users talk to?**
	- **What assumptions should be made about base station coordination?**
	- **Should frequency reuse be fixed or optimized?**
	- **Is capacity defined by uplink or downlink? Capacity becomes very dependent on propagation model**
- **Practical capacity definitions (rates or users)**
- **Typically assume a fixed set of system parameters**
	- **Assumptions differ for different systems: comparison hard**
	- **Does not provide a performance upper bound**

Approaches to Date

- **Shannon Capacity**
	- **TDMA systems with joint base station processing**
- **Multicell Capacity**
	- **Rate region per unit area per cell**
	- **Achievable rates determined via Shannon-theoretic analysis or for practical schemes/constraints**
	- **Area spectral efficiency is sum of rates per cell**
- **User Capacity**
	- **Calculates how many users can be supported for a given performance specification.**
	- **Results highly dependent on traffic, voice activity, and propagation models. Can be improved through interference reduction techniques. (Gilhousen et. al.)**
	-

Wyner Uplink Capacity

Linear or hexagonal cells

 $\cdot \cdot \cdot \cdot$

Received signal at base station (N total users)

$$
Y_n = \sum_{k=1}^K X_{nk} + \alpha \sum_{n' \in A_n} \sum_{k=1}^K X_{n'k} + Z_n,
$$

- **Propagation for out-of-cell interference captured by** α
- Average power constraint: $E(X_{n,k}^2) \leq P$
- Capacity C_N defined as largest achievable rate (N users)

Linear Array

• Theorem: $\lim_{N \to \infty} C_N = C^*(\alpha)$

for
\n
$$
C^*(\alpha) \triangleq \frac{1}{2K} \int_0^1 \log \left(1 + \frac{(1 + 2\alpha \cos 2\pi\theta)^2}{\sigma_0^2} \right) d\theta,
$$
\n
$$
\sigma_0^2 = \sigma^2 / KP.
$$

Optimal scheme uses TDMA within a cell - Users transmit in 1/K timeslots; power KP

Treats co-channel signals as interference:

Results

Channel Reuse in Cellular Systems

• Channel Reuse in Cellular Systems

- Motivation: power falloff with transmission distance
- Pro: increase system spectral efficiency
- Con: co-channel interference (CCI)
- "Channel": time slot, frequency band, (semi)-orthogonal code ...

• Cellular Systems with different multiple-access techniques

- CDMA (IS-95, CDMA2000): weak CCI, channel reuse in every cell • codes designed with a single and narrow autocorrelation peak
- TDMA (GSM), FDMA (AMPS): much stronger CCI
	- a minimum reuse distance required to support target SINR

• Channel reuse: traditionally a fixed system design parameter

Adaptive Channel Reuse

Trade

• Large reuse distance reduces CCI • Small reuse distance increases bandwidth allocation

• Related work

- [Frodigh 92] Propagation model with path-loss only
- channel assignment based on sub-cell compatibility
- [Horikawa 05] Adaptive guard interval control
	- special case of adaptive channel reuse in TDMA systems

• Current work

- Propagation models incorporating time variation of wireless channels static (AWGN) channel, fast fading and slow fading
- Channel reuse in cooperative cellular systems (network MIMO)
- compare with single base station processing

System Model

• More practical scheme: adjacent base station cooperation

Channel Assignment

• Intra-cell FDMA, K users per cell, total bandwidth in the system K·Bm

• Bandwidth allocated to each user

• maxium bandwidth Bm, corresponding to channel reuse in each cell • may opt for a fraction of bandwidth, based on channel strength • increased reuse distance, reduced CCI & possibly higher rate

Single Base Station Transmission: AWGN

• Mobile close to base station -> strong channel, small reuse distance

• Reuse factor changes (1 -> ½) at transition distance $d_T = 0.62$ mile

Rayleigh Fast Fading Channel

14 • Both "sandwiched" by same upper/lower bounds (small gap in between)

Rayleigh Slow Fading Channel

• Observations

• Optimal reuse factor random at each distance, also depends on fading • Larger reuse distance ($1/\tau > 2$) needed when mobiles close to cell edge

Base Station Cooperation: AWGN

• an initial choice to gain insight into system design

Performance Comparison

• no reuse channel in adjacent cell: to avoid base station serving user and interferer at the same time

• reuse factor ½ optimal at all d: suppressing CCI without overly shrinking the bandwidth allocation

• bandwidth reduction $(1-1/2)$ overshadows benefit from cooperation

• Advantage of cooperation over single cell transmission: only prominent when users share the channel; limited with intra-cell TD/FD [Liang 06]

• Remedy: allow more base stations to cooperate

in the extreme case of full cooperation, channel reuse in every cell

Area Spectral Efficiency

S/I increases with reuse distance.

- **For BER fixed, tradeoff between reuse distance and link spectral efficiency (bps/Hz).**
- Area Spectral Efficiency: $A_e = \sum R_i / (0.25D^2 \pi)$ bps/Hz/Km².

ASE with Adaptive Modulation

- **Users adapt their rates (and powers) relative to S/I variation.**
- **S/I distribution for each user based on propagation and interference models.**
	- $\gamma_a = S_a / \sum S_a$
	- **Computed for extreme interference conditions.**
	- **Simulated for average interference conditions.**
- **The maximum rate Rⁱ for each user in a cell is computed from its S/I distribution. For narrowband system use adaptive MQAM analysis**

Propagation Model

Two-slope path loss model:

$$
\overline{S}_{\cdot}(d) = \frac{K}{d^{*}(1+d/g)^{*}}\overline{S}_{\cdot},
$$

- **Slow fading model: log-normal shadowing**
- **Fast fading model: Nakagami-m Models Rayleigh and approximates Ricean.**
- **ASE maximized with reuse distance of one! Adaptive modulation compensate for interference**

ASE vs. Cell Radius

Distributed Antennas (DAS) in Cellular

- **Basic Premise:**
- đ \mathbf{m} DAS **Distribute BS antennas throughout cell**
	- **Rather than just at the center Antennas connect to BS through wireless/wireline links**
- **Performance benefits**
	- **Capacity**
	- **Coverage**
	- **Power consumption**

Average Ergodic Rate

- **Assume full CSIT at BS of gains for all antenna ports**
- **Downlink is a MIMO broadcast channel with full CSIR**
- **Expected rate is**

$$
C_{\text{o}ii}(P) = E_{u}E_{s\theta} \left[\log_2 \left(1 + \overline{S} \left(\sum_{I=1}^{N} \sqrt{\frac{f_{i}}{D(p_{i}, u)^{\alpha}} } \right)^{2} \right) \right]
$$

Average over user location and shadowing

¹ *p* \bar{p}_2 \overline{p}_2 ⁴ *p*

 \sim

5 ⁶ *p p* ⁷ *p*

- **DAS optimization**
	- **Where to place antennas**
	- **Goal: maximize ergodic rate**

- **is the interference coefficient from cell j**
	- **Autocorrelation of neighboring cell codes for CDMA systems**
	- Set to 1 for LTE(OFDM) systems with frequency reuse of one.

Interference Effect

Area Spectral Efficiency

 Average user rate/unit bandwidth/unit area (bps/Hz/Km²) Captures effect of cell size on spectral efficiency and interference

Summary

- **Wireless data/multimedia are main drivers for future generations of cellular systems.**
	- **Killer application unknown; how will cellular users access the Internet; will cellular or WLANs prevail.**
- **Efficient systems are interference-limited Interference reduction key to high system capacity**
- **Adaptive techniques in cellular can improve significantly performance and capacity**
- **MIMO a powerful technique, but impact on outof-cell interference and implementation unknown.**

Dynamic Resource Allocation

Allocate resources as user and network conditions change

BASE **STATION**

Resources:

- **Channels**
- **Bandwidth**
- **Power Rate**
- **Base stations**
- **Access**
- **Optimization criteria**
	- **Minimize blocking (voice only systems)**
	- **Maximize number of users (multiple classes)**
	- **Maximize "revenue": utility function**
		- **Subject to some minimum performance for each user**

Dynamic Channel Allocation

- **Fixed channel assignments are inefficient**
	- **Channels in unpopulated cells underutilized**
	- **Handoff calls frequently dropped**
- **Channel Borrowing**
	- **A cell may borrow free channels from neighboring cells**
- **Changes frequency reuse plan**
- **Channel Reservations**
	- **Each cell reserves some channels for handoff calls Increases blocking of new calls, but fewer dropped calls**
- **Dynamic Channel Allocation**
	- **Rearrange calls to pack in as many users as possible without**
	- **violating reuse constraints**

Very high complexity "DCA is a 2G/4G problem"

- **Variable Rate and Power**
- **Narrowband systems**
	- **Vary rate and power (and coding)**
	- **Optimal power control not obvious**
- **CDMA systems**
	- **Vary rate and power (and coding)**
 • Multiple methods to vary rate (VBR, MC, VC)
		-
	- **Optimal power control not obvious**
- **Optimization criteria**
	- **Maximize throughput/capacity**
	- **Meet different user requirements (rate, SIR, delay, etc.)**
	- **Maximize revenue**

Multicarrier CDMA

- **Multicarrier CDMA combines OFDM and CDMA**
- **Idea is to use DSSS to spread a narrowband signal and then send each chip over a different subcarrier DSSS time operations converted to frequency domain**
- **Greatly reduces complexity of SS system FFT/IFFT replace synchronization and despreading**
- **More spectrally efficient than CDMA due to the overlapped subcarriers in OFDM**
- **Multiple users assigned different spreading codes Similar interference properties as in CDMA**

Rate and Power Control in CDMA*

- **Optimize power and rate adaptation in a CDMA system**
	- **Goal is to minimize transmit power**
- **Each user has a required QoS Required effective data rate**

*Simultaneous Rate and Power Control in Multirate Multimedia CDMA Systems," S. Kandukuri and S. Boyd

System Model: General

- **Single cell CDMA**
- **Uplink multiple access channel**
- **Different channel gains**
- **System supports multiple rates**

System Model: Parameters

- **Parameters**
	- **^N = number of mobiles**
	- P_i = power transmitted by mobile i
	- R_i = raw data rate of mobile i
	- **^W = spread bandwidth**
- **QoS requirement of mobile i, ⁱ , is the effective data rate**

$$
\gamma_i = R_i(1-P_{ei})
$$

System Model: Interference

- **Interference between users represented by cross correlations between codes, ^Cij**
- **Gain of path between mobile i and base station, ^Li**
- **Total interfering effect of mobile j on** mobile i, G_{ij} is $G_{ij} = L_i C_{ij}$

SIR Model (neglect noise)

$$
SIR_i = \frac{G_{ii}P_i}{\sum_{j \neq i} G_{ij}P_j + \eta}
$$

$$
\beta_i = \left(\frac{E_b}{I_o}\right)_i = \frac{SIR_iW}{R_i}
$$

QoS Formula

 Probability of error is a function of ^I Formula depends on the modulation scheme

 $=\frac{1}{2}$

- **Simplified ^P^e expression**
- **QoS formula** $P_{ei} = \frac{1}{c\beta_i}$

$$
\gamma_i = R_i \left(1 - P_e \left(\frac{SIR_iW}{R_i}\right)\right)
$$

Solution

- **Objective: Minimize sum of mobile powers subject to QoS requirements of all mobiles**
- **Technique: Geometric programming**
	- **A non-convex optimization problem is cast as a convex optimization problem**
- **Convex optimization**
	- **Objective and constraints are all convex**
	- **Can obtain a global optimum or a proof that the set of specifications is infeasible**
	- **Efficient implementation**

Problem Formulation

Minimize 1 ^TP (sum of powers)

Subject to

$$
R_i \left(1 - P_e \left(\frac{SIR_iW}{R_i} \right) \right) \ge \gamma_i
$$

$$
R_i \le R_{thresh}
$$

$$
P \succ 0
$$

J ℩

 \vert \vert J $\overline{}$

Can also add constraints such as $P_i \geq P_{\min}$ $P_i \leq P_{\max}$

Results

Sum of powers transmitted vs interference

Results

QoS vs. interference