EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems

- Announcements
 - Project proposals due today
 - Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100
- Multiuser Detection in cellular
- MIMO in Cellular
 - Multiuser MIMO/OFDM
 - Multiplexing/diversity/IC tradeoffs
 - Distributed antenna systems
 - Virtual MIMO
 - Brian's presentation

MUD in Cellular

- · Goal: decode interfering signals to remove them from desired signal
- Interference cancellation
 - decode strongest signal first; subtract it from the remaining signals
 repeat cancellation process on remaining signals
 works best when signals received at very different power levels
- Optimal multiuser detector (Verdu Algorithm)
 - cancels interference between users in parallel
 - complexity increases exponentially with the number of users
- · Other techniques trade off performance and complexity

 - decorrelating detector decision-feedback detector
 - multistage detector
- MUD often requires channel information; can be hard to obtain

MUD in Cellular

In the uplink scenario, the BS RX must decode all K desired users, while suppressing other-cell interference from many independent users. Because it is challenging to dynamically synchronize all K desired users, they generally transmit asynchronously with respect to each other, making orthogonal spreading codes unviable. In the uplink scenario, the BS RX mus decode all K desired users, while

In the downlink scenario, each RX only needs to decode its own signal, while suppressing other-cell interference from just a few dominant neighboring cells. Because all K users signals originate at the base station, the link is synchronous and the K – 1 intracell interference and the orthogonalized at the base station retransmitter. Bytically, shough, some orthogonality is lost in the channel.

Successive Interference Cancellers

- · Successively subtract off strongest detected bits
- **MF output:** $b_1 = c_1 x_1 + r c_2 x_2 + z_1$ $b_2 = c_2 x_2 + r c_1 x_1 + z_2$
- Decision made for strongest user: $\hat{x}_1 = sgn(b_1)$
- Subtract this MAI from the weaker user:

$$\hat{x}_2 = \operatorname{sgn}(y_2 - rc_1\hat{x}_1) = \operatorname{sgn}(c_2x_2 + rc_1(x_1 - \hat{x}_1) + z_2)$$

- all MAI can be subtracted is user 1 decoded correctly
- · MAI is reduced and near/far problem alleviated
 - Cancelling the strongest signal has the most benefit • Cancelling the strongest signal is the most reliable cancellation

- · Similarly uses all MF outputs
- Simultaneously subtracts off all of the users' signals from all of the others
- works better than SIC when all of the users are received with equal strength (e.g. under power control)

Performance of MUD: AWGN

Optimal Multiuser Detection

- Maximum Likelihood Sequence Estimation
 - Detect bits of all users simultaneously (2^M possibilities)
- Matched filter bank followed by the VA (Verdu'86)
 - VA uses fact that I_i=f(b_i, j≠i)
 - Complexity still high: (2^{M-1} states)
 - In asynchronous case, algorithm extends over 3 bit times
 - VA samples MFs in round robin fasion

MIMO Techniques in Cellular

- How should MIMO be *fully* used in cellular systems?
- Shannon capacity requires dirty paper coding or IC (Thur)
- Network MIMO: Cooperating BSs form an antenna array
 - Downlink is a MIMO BC, uplink is a MIMO MAC
 - Can treat "interference" as known signal (DPC) or noise
 - Shannon capacity will be covered later this week
- Multiplexing/diversity/interference cancellation tradeoffs
 - Can optimize receiver algorithm to maximize SINR

Tradeoffs

MUD type	Complexity order	Latency	ECCs?	K > N allowed?
Optimal max. likelihood	2 ^K	1	Separate	Yes
Linear	K to K ³	1	Separate ¹	No (ZF), Yes (MMSE)
Turbo	PK to 2 ^K	2 <i>P</i>	Integrated	Yes
Parallel IC	PK	P	Integrated	Yes
Successive IC	К	K	Integrated	Yes
Nonorth. matched filter	К	1	Separate	Yes ²
Orth. matched filter	К	1	Separate	No

■ Table 1. Key general trends of different multiuser receivers, with spreading factor N, number of users K, and P receiver stages.

Multiuser OFDM with Multiple Antennas

- MIMO greatly increases channel capacity
- Multiple antennas also used for spatial multiple access:
 - Users separated by spatial signatures (versus CDMA time signatures)
 - Spatial signatures are typically not orthogonal
 - May require interference reduction (MUD, cancellation, etc.)
- Methods of spatial multiple access
 - Singular value decomposition
 - Space-time equalizationBeamsteering
- Use similar optimization formulation for resource allocation

"Spatial Multiuser Access OFDM With Antenna Diversity and Power Control" J. Kim and J. Cioffi, VTC 2000

Resulting Power Control Algorithm

- Waterfill for all K users if:
 - Perfect interference cancellation, or
 - BER constraint is satisfied
- When interference kicks in:
 - Do not assign further energy, instead, use it on other channels.

Performance Results

Comparison to Other Methods:

- Has path diversity versus beamforming
- Space Time Equalizer:

$W(f) = [H*(f)H(f)]^{-1}H*(f)$

- Noise enhancement when signal fades
- Since channel gain (Λ) not present in SVD, channel model updates less frequently, and is less prone to channel estimation errors
- SVD less prone to near/far because of spatial isolation.

Multiplexing/diversity/interference cancellation tradeoffs

- Spatial multiplexing provides for multiple data streams
- TX beamforming and RX diversity provide robustness to
- TX beamforming and RX nulling cancel interference
 - Can also use DSP techniques to remove interference post-detection
 Optimal use of antennas in wireless networks unknown

Adaptive Array Benefits

- Can provide array/diversity gain of M
- Can suppress M-1 interferers
- Provides diversity gain of M-J for nulling of J interferers
- Can obtain multiplexing gain min(M,N)

if transmitter has multiple antennas Diversity/Multiplexing/Interference Mitigation Tradeoff

Summary of OFDM/MIMO

- OFDM compensates for ISI
 - Flat fading can be exploited
- One spatial mode per user per frequency
- Receiver spatially separates multiple users on a frequency
- Traditional detection methods used
- Power control similar to other systems

Antenna Techniques

- Switched Beam or Phased Array
 - Antenna points in a desired direction
 - Other directions have (same) lower gain
 - No diversity benefits
- Smart Antennas (Adaptive Array)
 - Signals at each antenna optimally weighted
 - Weights optimize tradeoff between diversity and interference mitigation
 - Channel tracking required

Performance Benefits

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Interference suppression ⇒ improved link quality, reliability, and robustness
- Multiplexing gain ⇒ higher data rates
- Reduced interference to other systems

Analysis

- We have derived closed-form expressions for outage probability and error probability under optimal MRC.
- Analysis based on SINR MGF.
- Can be used to determine the impact on performance of adding antennas

P_{out} versus average normalized SINR/ γ_{th}

interferer configuration (fixed total power)

different interferers + noise configurations

BER vs. Average SNR

Distributed Antennas (DAS) in Cellular

• Basic Premise:

- Antennas connect to BS through wireless/wireline links
- Performance benefits
 - Capacity
 - Coverage
 - Power consumption

Average Ergodic Rate

- Assume full CSIT at BS of gains for all antenna ports
- Downlink is a MIMO broadcast channel with full CSIR

• Expected rate is

$$C_{csit}(P) = E_u E_{sh} \left[\log_2 \left(1 + \overline{S} \left(\sum_{l=1}^N \sqrt{\frac{f_i}{D(p_i, u)^a}} \right)^2 \right) \right]$$

- Average over user location and shadowing
- DAS optimization
 - Where to place antennas
 - Goal: maximize ergodic rate

Solve via Stochastic Gradients

- Stochastic gradient method to find optimal placement
 - 1. Initialize the location of the ports randomly inside the coverage region and set t=0.
 - Generate one realization of the shadowing vector f(t) based on the probabilistic model that we have for shadowing
 - 3. Generate a random location u(t), based on the geographical distribution of the users inside the cell
 - 4. Update the location vector as $P_{t+1} = P_t + \frac{\partial}{\partial P} C(u(t), f(t), P)$
 - 5. Let t = t + 1 and repeat from step 2 until convergence.

Gradient Trajectory

- N = 3 (three nodes)
- Circular cell size of radius R = 1000m
- Independent log-Normal shadow fading
- Path-loss exponent: α=4
- Objective to maximize: average ergodic rate with CSIT

Power efficiency gains

- Power gain for optimal placement versus central placement
 - Three antennas

Non-circular layout

• For typical path-loss exponents 2<α<6, and for N>5, optimal antenna deployment layout is not circular

Interference Effect

• Impact of intercell interference

$$SINR = \frac{\sum_{i=1}^{N} \frac{f_i}{D(p_i, u)^{\alpha}}}{\sum_{j=1}^{6} \sum_{i=1}^{N} \gamma_j \frac{f_i}{D(p_i^j, u)^{\alpha}} + \sigma^2}$$

- γ_j is the interference coefficient from cell j
- Autocorrelation of neighboring cell codes for CDMA systems
- Set to 1 for LTE(OFDM) systems with frequency reuse of one.

Interference Effect

Power Allocation

- · Prior results used same fixed power for all nodes
- · Can jointly optimize power allocation and node placement
- Given a sum power constraint on the nodes within a cell, the primal-dual algorithm solves the joint optimization
- For N=7 the optimal layout is the same: one node in the center and six nodes in a circle around it.
 - Optimal power of nodes around the central node unchanged

Power Allocation Results

 For larger interference and in high path-loss, central node transmits at much higher power than distributed nodes

Area Spectral Efficiency

- Average user rate/unit bandwidth/unit area (bps/Hz/Km²)
- · Captures effect of cell size on spectral efficiency and interference
- ASE typically increases as cell size decreases
- Optimal placement leads to much higher gains as cell size shrinks vs. random placement

MIMO in Cellular: *Performance Benefits*

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Interference suppression (TXBF) ⇒ improved quality, reliability, and robustness
- Multiplexing gain ⇒ higher data rates
- Reduced interference to other systems
 Optimal use of MIMO in cellular systems, especially given practical constraints, remains an open problem

Virtual/Network MIMO in Cellular

Many open problems for next-gen systems

Will gains in practice be big or incremental; in capacity or coverage?

- Network MIMO: Cooperating BSs form a MIMO array
 - Downlink is a MIMO BC, uplink is a MIMO MAC
 - Can treat "interference" as known signal (DPC) or noise
 - Can cluster cells and cooperate between clusters
- Mobiles can cooperate via relaying, virtual MIMO, conferencing, analog network coding, ...
- Design Issues: CSI, delay, backhaul, complexity

Open design questions

- Single Cluster

 - Effect of impairments (finite capacity, delay) on the backbone connecting APs:
 Effects of reduced feedback (imperfect CSI) at the APs.
 Performance improvement from cooperation among mobile terminals
 - Optimal degrees of freedom allocation
- Multiple Clusters

 - How many cells should form a cluster?
 How should interference be treated? Cancelled spatially or via DSP?
 - How should MIMO and virtual MIMO be utilized: capacity vs. diversity vs interference cancellation tradeoffs

Presentation

- "Asynchronous Interference Mitigation in Cooperative Base Station Systems" by H. Zhang, N. Mehta, A. Molisch, J. Zhang and H. Dai, IEEE Trans. Wireless Commun., Jan 2008.
- Presentation by Brian Jungman

Cooperative Multipoint (CoMP)

Part of LTE Standard - not yet implemented

"Coordinated multipoint; Concepts, performance, and field trial results" Communications Magazine, IEEE , vol.49, no.2, pp.102-111, February 2011

Summary

- Multiuser detection reduces interference, and thus allows greater spectral efficiency in cellular
 - Techniques too complex for practical implementations in mobiles
 - Recently have some implementations in BSs
- MIMO/OFDM slices system resources in time, frequency, and space
 - Can adapt optimally across one or more dimensions
- MIMO introduces diversity multiplexinginterference cancellation tradeoffs
- Distributed antennas (DAS) and cooperative multipoint leads to large performance gains