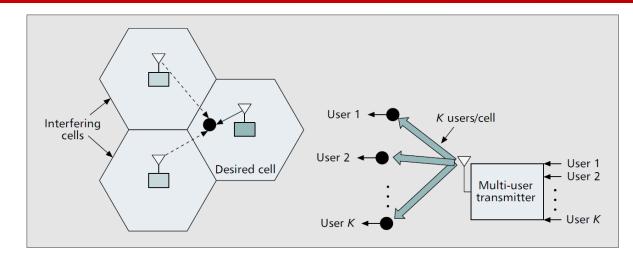
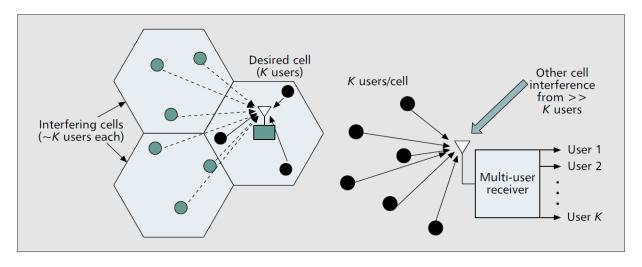
EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems


• Announcements

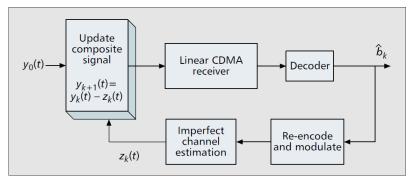
- Project proposals due today
- Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100
- Multiuser Detection in cellular

• MIMO in Cellular


- Multiuser MIMO/OFDM
- Multiplexing/diversity/IC tradeoffs
- Distributed antenna systems
- Virtual MIMO
- Brian's presentation

MUD in Cellular

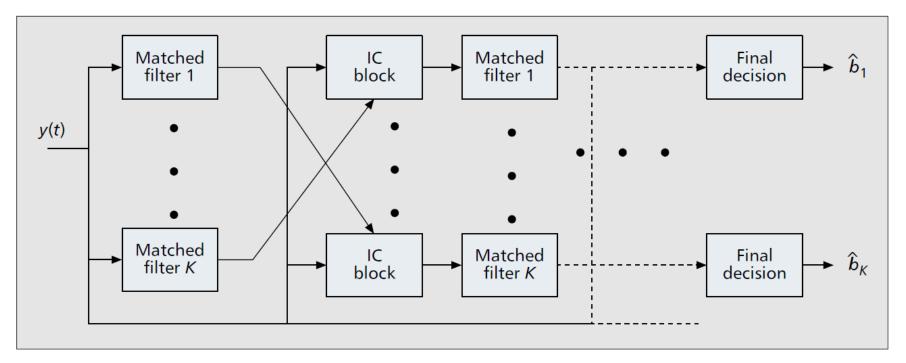
In <u>the uplink scenario</u>, the BS RX must decode all K desired users, while suppressing other-cell interference from many independent users. Because it is challenging to dynamically synchronize all K desired users, they generally transmit asynchronously with respect to each other, making orthogonal spreading codes unviable.


In the <u>downlink scenario</u>, each RX only needs to decode its own signal, while suppressing other-cell interference from just a few dominant neighboring cells. Because all K users' signals originate at the base station, the link is synchronous and the K - 1intracell interferers can be orthogonalized at the base station transmitter. Typically, though, some orthogonality is lost in the channel.

MUD in Cellular

- Goal: decode interfering signals to remove them from desired signal
- Interference cancellation
 - decode strongest signal first; subtract it from the remaining signals
 - repeat cancellation process on remaining signals
 - works best when signals received at very different power levels
- Optimal multiuser detector (Verdu Algorithm)
 - cancels interference between users in parallel
 - complexity increases exponentially with the number of users
- Other techniques trade off performance and complexity
 - decorrelating detector
 - decision-feedback detector
 - multistage detector
- MUD often requires channel information; can be hard to obtain

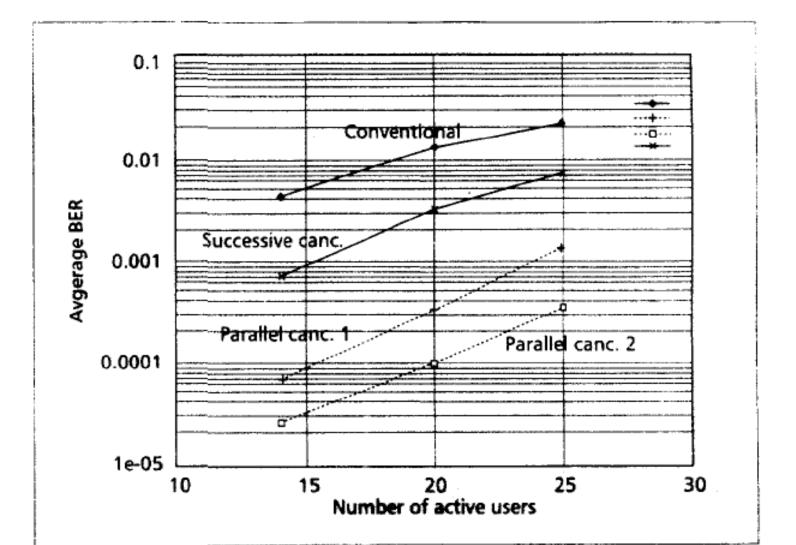
Successive Interference Cancellers



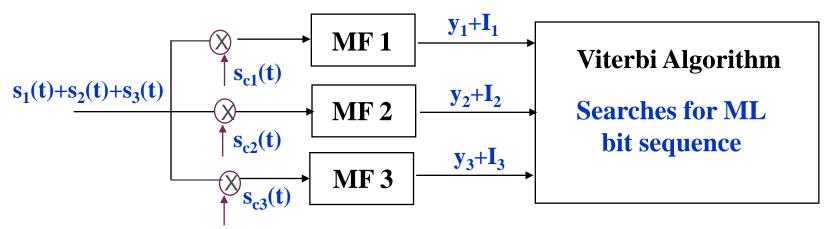
- Successively subtract off strongest detected bits
- **MF output:** $b_1 = c_1 x_1 + r c_2 x_2 + z_1$ $b_2 = c_2 x_2 + r c_1 x_1 + z_2$
- **Decision made for strongest user:** $\hat{x}_1 = \operatorname{sgn}(b_1)$
- Subtract this MAI from the weaker user:

$$\hat{x}_{2} = \operatorname{sgn}(y_{2} - rc_{1}\hat{x}_{1})$$

= sgn(c_{2}x_{2} + rc_{1}(x_{1} - \hat{x}_{1}) + z_{2})


- all MAI can be subtracted is user 1 decoded correctly
- MAI is reduced and near/far problem alleviated
 - Cancelling the strongest signal has the most benefit
 - Cancelling the strongest signal is the most reliable cancellation

Parallel Interference Cancellation

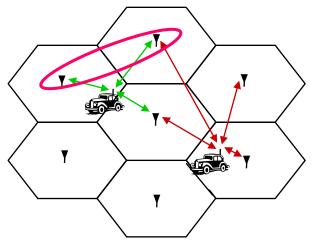

- Similarly uses all MF outputs
- Simultaneously subtracts off all of the users' signals from all of the others
- works better than SIC when all of the users are received with equal strength (e.g. under power control)

Performance of MUD: AWGN

Optimal Multiuser Detection

- Maximum Likelihood Sequence Estimation
 - Detect bits of all users simultaneously (2^M possibilities)
- Matched filter bank followed by the VA (Verdu'86)
 - VA uses fact that $I_i = f(b_i, j \neq i)$
 - Complexity still high: (2^{M-1} states)
 - In asynchronous case, algorithm extends over 3 bit times
 - VA samples MFs in round robin fasion

Tradeoffs


MUD type	Complexity order	Latency	ECCs?	K > N allowed?
Optimal max. likelihood	2 ^{<i>K</i>}	1	Separate	Yes
Linear	<i>K</i> to <i>K</i> ³	1	Separate ¹	No (ZF), Yes (MMSE)
Turbo	<i>PK</i> to 2 ^{<i>K</i>}	2 <i>P</i>	Integrated	Yes
Parallel IC	РК	Р	Integrated	Yes
Successive IC	К	К	Integrated	Yes
Nonorth. matched filter	К	1	Separate	Yes ²
Orth. matched filter	К	1	Separate	No

¹ With some exceptions (e.g., [39]), generally linear receivers cannot seamlessly integrate ECCs.

² Although allowed in principle, K > N is not likely to be achievable in practice for the MF receiver.

Table 1. *Key general trends of different multiuser receivers, with spreading factor* N, *number of users* K, *and* P *receiver stages.*

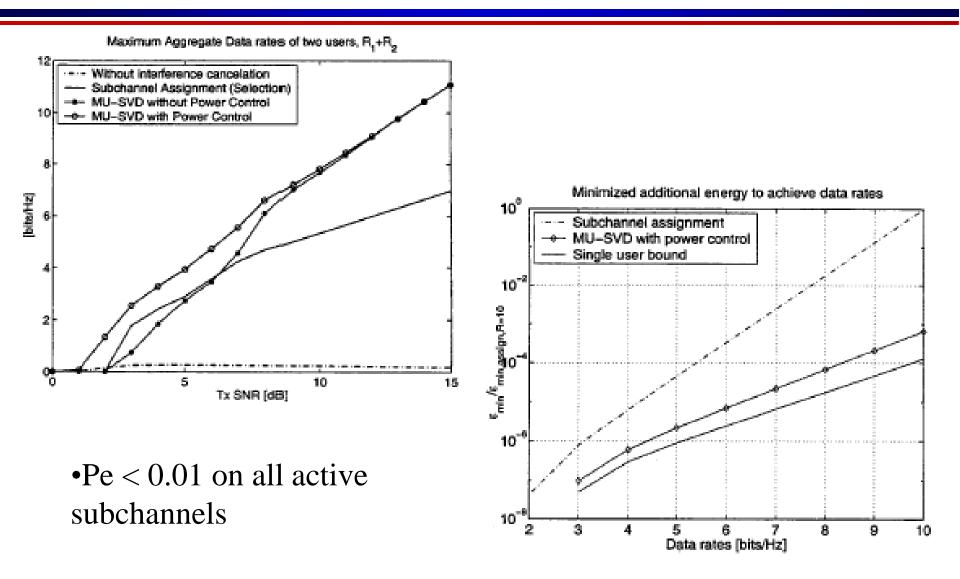
MIMO Techniques in Cellular

- How should MIMO be *fully* used in cellular systems?
- Shannon capacity requires dirty paper coding or IC (Thur)
- Network MIMO: Cooperating BSs form an antenna array
 - Downlink is a MIMO BC, uplink is a MIMO MAC
 - Can treat "interference" as known signal (DPC) or noise
 - Shannon capacity will be covered later this week
- Multiplexing/diversity/interference cancellation tradeoffs
 - Can optimize receiver algorithm to maximize SINR

Multiuser OFDM with Multiple Antennas

- MIMO greatly increases channel capacity
- Multiple antennas also used for spatial multiple access:
 - Users separated by spatial signatures (versus CDMA time signatures)
 - Spatial signatures are typically not orthogonal
 - May require interference reduction (MUD, cancellation, etc.)
- Methods of spatial multiple access
 - Singular value decomposition
 - Space-time equalization
 - Beamsteering

• Use similar optimization formulation for resource allocation

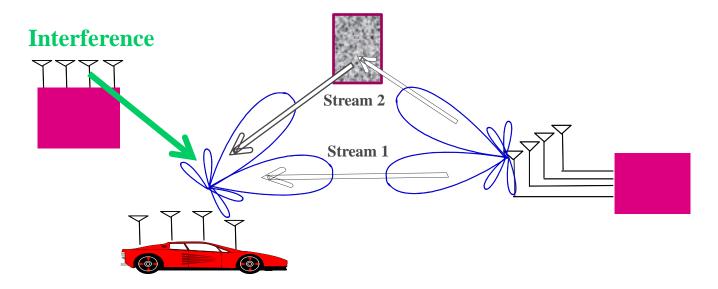

"Spatial Multiuser Access OFDM With Antenna Diversity and Power Control" J. Kim and J. Cioffi, VTC 2000

Resulting Power Control Algorithm

• Waterfill for all K users if:

- Perfect interference cancellation, or
- BER constraint is satisfied
- When interference kicks in:
 - Do not assign further energy, instead, use it on other channels.

Performance Results


Comparison to Other Methods:

- Has path diversity versus beamforming
- Space Time Equalizer:
 - $W(f) = [H^{*}(f)H(f)]^{-1}H^{*}(f)$
 - Noise enhancement when signal fades
 - Since channel gain (Λ) not present in SVD, channel model updates less frequently, and is less prone to channel estimation errors
 - SVD less prone to near/far because of spatial isolation.

Summary of OFDM/MIMO

- OFDM compensates for ISI
 Flat fading can be exploited
- One spatial mode per user per frequency
- Receiver spatially separates multiple users on a frequency
- Traditional detection methods used
- Power control similar to other systems

Multiplexing/diversity/interference cancellation tradeoffs

- Spatial multiplexing provides for multiple data streams
- TX beamforming and RX diversity provide robustness to fading
- TX beamforming and RX nulling cancel interference
 - Can also use DSP techniques to remove interference post-detection Optimal use of antennas in wireless networks unknown

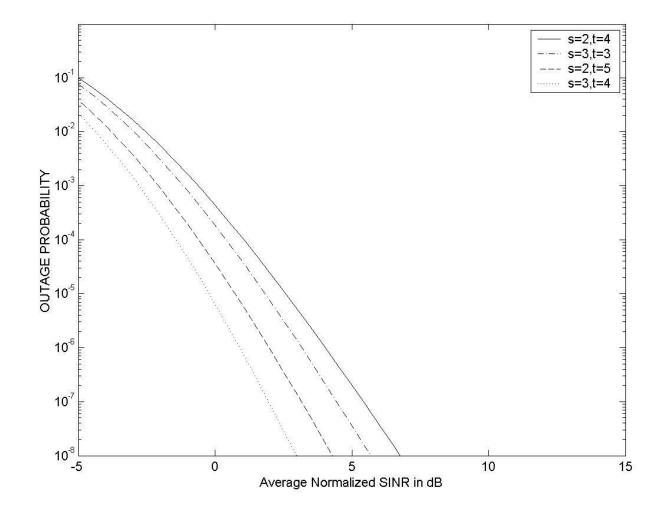
Antenna Techniques

- Switched Beam or Phased Array
 - Antenna points in a desired direction
 - Other directions have (same) lower gain
 - No diversity benefits
- Smart Antennas (Adaptive Array)
 - Signals at each antenna optimally weighted
 - Weights optimize tradeoff between diversity and interference mitigation
 - Channel tracking required

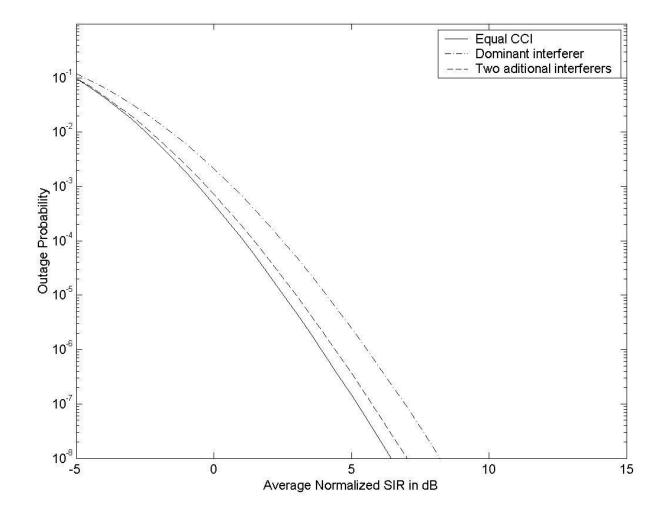
Adaptive Array Benefits

- Can provide array/diversity gain of M
- Can suppress M-1 interferers
- Provides diversity gain of M-J for nulling of J interferers

• Can obtain multiplexing gain min(M,N) if transmitter has multiple antennas Diversity/Multiplexing/Interference Mitigation Tradeoff

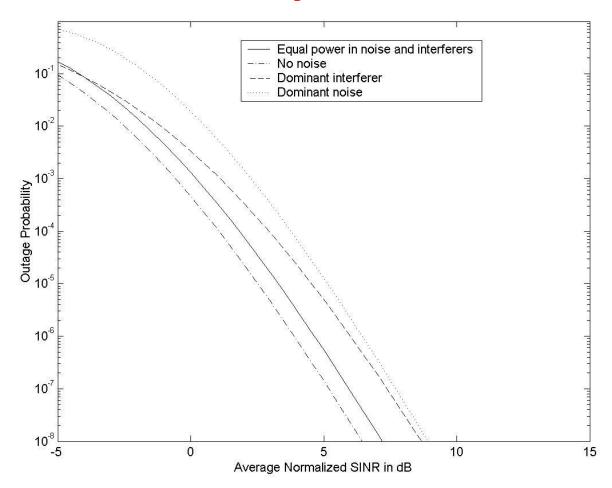

Performance Benefits

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Interference suppression ⇒ improved link quality, reliability, and robustness
- Multiplexing gain \Rightarrow higher data rates
- Reduced interference to other systems

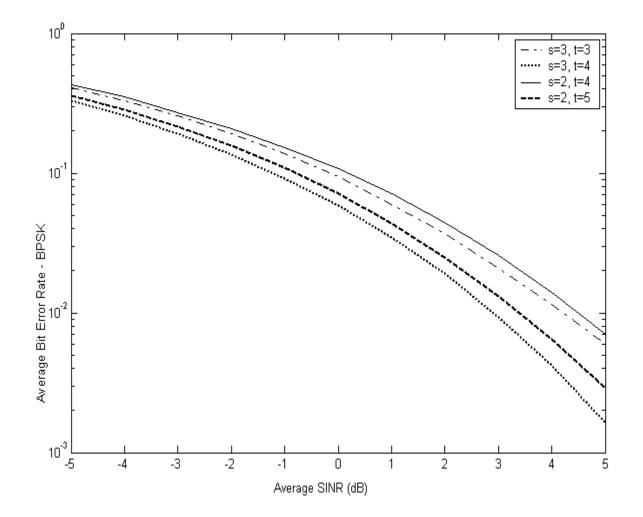

Analysis

- We have derived closed-form expressions for outage probability and error probability under optimal MRC.
- Analysis based on SINR MGF.
- Can be used to determine the impact on performance of adding antennas

P_{out} versus average normalized SINR/ γ_{th}



interferer configuration (fixed total power)



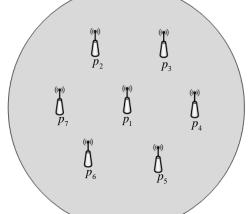
different interferers + noise configurations

Fixed I+N power

BER vs. Average SNR

Distributed Antennas (DAS) in Cellular

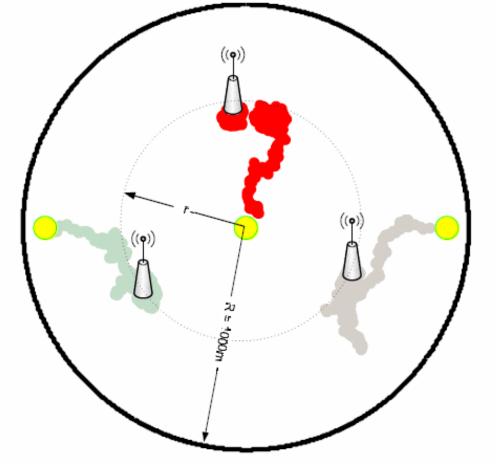
DAS


- Basic Premise:
 - Distribute BS antennas throughout cell
 - Rather than just at the center
 - Antennas connect to BS through wireless/wireline links
- Performance benefits
 - Capacity
 - Coverage
 - Power consumption

Average Ergodic Rate

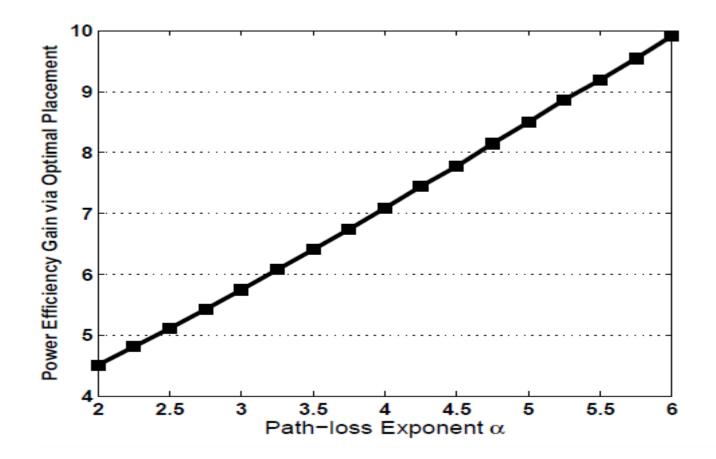
- Assume full CSIT at BS of gains for all antenna ports
- Downlink is a MIMO broadcast channel with full CSIR
- Expected rate is

$$C_{csit}(P) = E_u E_{sh} \left[\log_2 \left(1 + \overline{S} \left(\sum_{I=1}^N \sqrt{\frac{f_i}{D(p_i, u)^\alpha}} \right)^2 \right) \right]$$

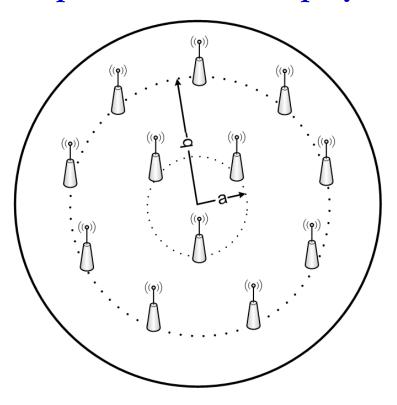

- Average over user location and shadowing
- DAS optimization
 - Where to place antennas
 - Goal: maximize ergodic rate

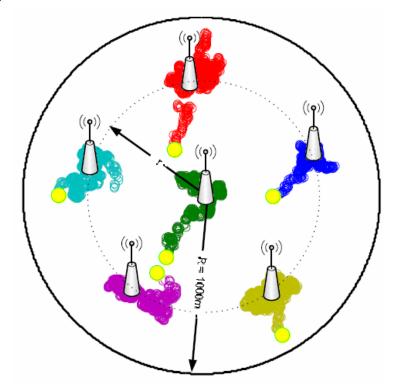
Solve via Stochastic Gradients

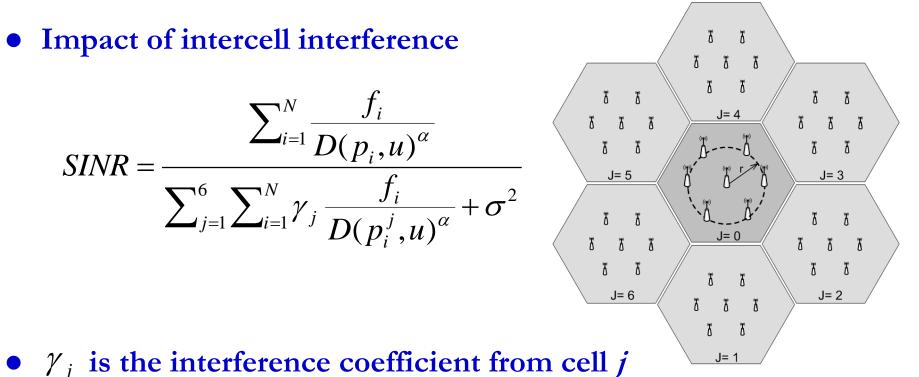
- Stochastic gradient method to find optimal placement
 - 1. Initialize the location of the ports randomly inside the coverage region and set t=0.
 - 2. Generate one realization of the shadowing vector f(t) based on the probabilistic model that we have for shadowing
 - 3. Generate a random location u(t), based on the geographical distribution of the users inside the cell
 - 4. Update the location vector as $P_{t+1} = P_t + \frac{\partial}{\partial P} C(u(t), f(t), P) \Big|_{P}$
 - 5. Let t = t + 1 and repeat from step 2 until convergence.


Gradient Trajectory

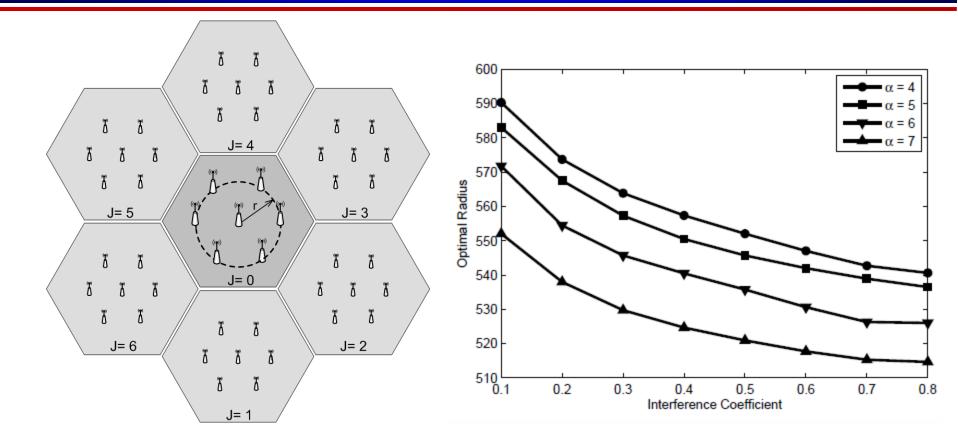
- N = 3 (three nodes)
- Circular cell size of radius R = 1000m
- Independent log-Normal shadow fading
- Path-loss exponent: $\alpha = 4$
- Objective to maximize : average ergodic rate with CSIT


Power efficiency gains


- Power gain for optimal placement versus central placement
 - Three antennas

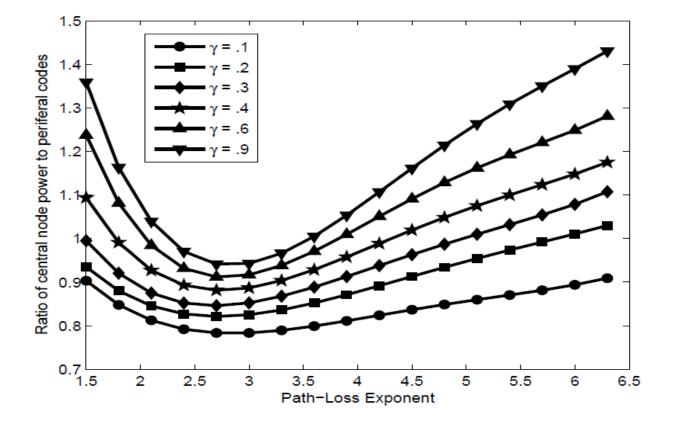

Non-circular layout

• For typical path-loss exponents $2 < \alpha < 6$, and for N>5, optimal antenna deployment layout is not circular



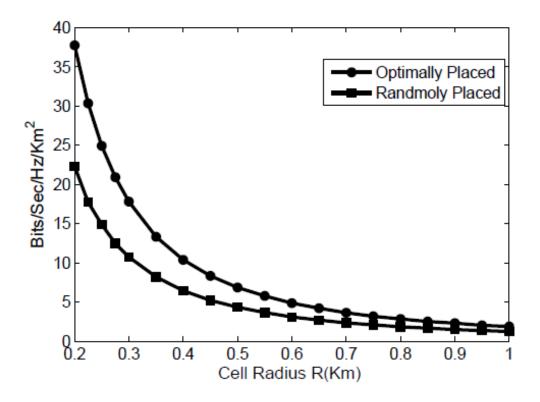
Interference Effect

- Autocorrelation of neighboring cell codes for CDMA systems
- Set to 1 for LTE(OFDM) systems with frequency reuse of one.


Interference Effect

Power Allocation

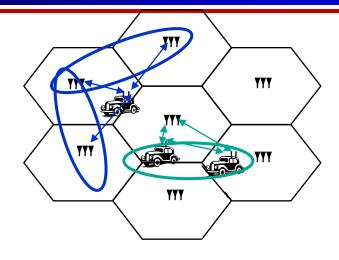
- Prior results used same fixed power for all nodes
- Can jointly optimize power allocation and node placement
- Given a sum power constraint on the nodes within a cell, the primal-dual algorithm solves the joint optimization
- For N=7 the optimal layout is the same: one node in the center and six nodes in a circle around it.
 - Optimal power of nodes around the central node unchanged


Power Allocation Results

• For larger interference and in high path-loss, central node transmits at much higher power than distributed nodes

Area Spectral Efficiency

- Average user rate/unit bandwidth/unit area (bps/Hz/Km²)
 - Captures effect of cell size on spectral efficiency and interference
- ASE typically increases as cell size decreases
- Optimal placement leads to much higher gains as cell size shrinks vs. random placement

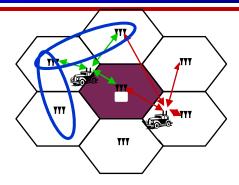


MIMO in Cellular: *Performance Benefits*

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Interference suppression (TXBF) ⇒ improved quality, reliability, and robustness
- Multiplexing gain \Rightarrow higher data rates
- Reduced interference to other systems

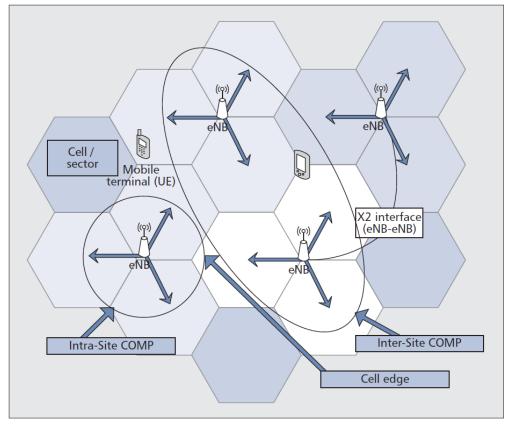
Optimal use of MIMO in cellular systems, especially given practical constraints, remains an open problem

Virtual/Network MIMO in Cellular



Many open problems for next-gen systems

Will gains in practice be big or incremental; in capacity or coverage?


- Network MIMO: Cooperating BSs form a MIMO array
 - Downlink is a MIMO BC, uplink is a MIMO MAC
 - Can treat "interference" as known signal (DPC) or noise
 - Can cluster cells and cooperate between clusters
- Mobiles can cooperate via relaying, virtual MIMO, conferencing, analog network coding, ...
- *Design Issues:* CSI, delay, backhaul, complexity

Open design questions

- Single Cluster
 - Effect of impairments (finite capacity, delay) on the backbone connecting APs:
 - Effects of reduced feedback (imperfect CSI) at the APs.
 - Performance improvement from cooperation among mobile terminals
 - Optimal degrees of freedom allocation
- Multiple Clusters
 - How many cells should form a cluster?
 - How should interference be treated? Cancelled spatially or via DSP?
 - How should MIMO and virtual MIMO be utilized: capacity vs. diversity vs interference cancellation tradeoffs

Cooperative Multipoint (CoMP)

Part of LTE Standard - not yet implemented

Figure 1. Base station cooperation: intersite and intrasite COMP.

• "Coordinated multipoint: Concepts, performance, and field trial results" *Communications Magazine, IEEE*, vol.49, no.2, pp.102-111, February 2011

	Dresden testbed	Berlin testbed		
Environment	Dense urban			
Trial setup	10 sites with up to a total of 28 sectors	4 sites with up to 10 sectors		
Frequency	2.68 GHz DL, 2.53 GHz UL			
Baseline technology	OFDMA in DL and UL, scalable bandwidth 5–20 MHz, transmissions limited to a maximum of 40 resource blocks (PRBs) in UL and 10 PRBs in DL.	DL: 2×2 MIMO-OFDMA, UL: 1×2 SC-FDMA, scalable bandwidth 1.5–20 MHz, full bandwidth can be used in both up- and downlink		
Processing	Real-time DL transmission. For uplink COMP offline processing. Scheduling is investigated in quasi-realtime.	Real-time PHY, adaptive MIMO multiple access and network layer. PHY is extended for DL CoMP.		
Backhaul and interconnects	5.4/5.8 GHz microwave with a net data rate of 100 Mb/s and 1 ms delay	1 Gb/s Ethernet over optical fiber and free-space- optical links.		
Testbed scope	UL and DL MU-MIMO COMP, relaying, practical issues	DL MU-MIMO, COMP, relaying, real-time demos such as high-definition mobile video conference		

 Table 1. COMP testbeds developed within the EASY-C project.

Figure 2. Performance of selected uplink COMP schemes: 1) inter-site interference prediction, 2) inter-site joint detection, 3) intra-site joint detection, 4) combining inter-site interference prediction with intra-site joint detection.

Summary

- Multiuser detection reduces interference, and thus allows greater spectral efficiency in cellular
 - Techniques too complex for practical implementations in mobiles
 - Recently have some implementations in BSs
- MIMO/OFDM slices system resources in time, frequency, and space
 - Can adapt optimally across one or more dimensions
- MIMO introduces diversity multiplexinginterference cancellation tradeoffs
- Distributed antennas (DAS) and cooperative multipoint leads to large performance gains

Presentation

 "Asynchronous Interference Mitigation in Cooperative Base Station Systems" by H. Zhang, N. Mehta, A. Molisch, J. Zhang and H. Dai, IEEE Trans.
 Wireless Commun., Jan 2008.

• Presentation by Brian Jungman